
Diss. ETH No. 18190

Large-Scale Mining and Retrieval of Visual Data in
a Multimodal Context

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Technical Sciences

presented by

Till Quack

MSc. ETH Zuerich

born 15. September 1978

citizen of Germany

accepted on the recommendation of

Prof. Dr. Luc Van Gool, examiner

Prof. Dr. Andrew Zisserman, co-examiner

September 2008

To my grandparents.

Abstract

In recent years significant progress has been made in the field of object recognition,

mostly due to the introduction of powerful local image features. At the same time,

a growing amount of images and videos are being shared on the Internet. This

dissertation tries to combine these developments in proposing efficient retrieval and

mining algorithms suitable for such visual data, while exploiting its multimodal

context.

The work at hand advances the state-of-the-art with three main contributions.

Firstly, with the investigation of itemset mining algorithms in the domain of vi-

sual data. This class of simple, but efficient algorithms have proven to be a useful

tool for other kinds of data. We adapt these methods to work with local visual fea-

tures. The resulting algorithms are successfully employed to mine specific objects

in video data, and to identify frequent feature configurations as representatives of

object classes.

The second contribution consists of a multimodal data-mining method, which au-

tomatically mines objects and events from community photo collections on the In-

ternet. After crawling geotagged photos, the method automatically clusters photos

showing the same object or event using visual features. The system then proceeds

with analyzing the multimodal context of each identified cluster, in particular text

associated with the individual photos. This analysis results in a textual description

of the clusters. Furthermore, it is used to identify related Wikipedia pages. Finally,

building again on the mined visual data, this assignment is verified, and refined up

to an object-level annotation of mined entities for applications such as retrieval or

auto-annotation.

The third and final contribution consist of several prototype applications for scalable

retrieval in visual data, partly building on the data mined in the previous steps.

These retrieval applications focus on applications for mobile devices, again including

multimodal context such as GPS location of the user. In addition to the mobile

retrieval applications, novel web-and desktop applications are designed, for browsing

and auto-annotation in personal photo collections.

Zusammenfassung

In den letzten Jahren wurden erhebliche Fortschritte im Bereich der Objekterken-

nung erzielt. Diese Fortschritte basierten zu einem grossen Teil auf der Einführung

sogenannter lokaler Bildmerkmal Detektoren und Deskriptoren. Im gleichen Zeit-

raum wurden rasant wachsende Mengen von digitalen Bildern auf dem Internet

zugänglich gemacht. Die vorliegende Arbeit hat zum Ziel diese Entwicklungen zu

kombinieren, indem sie effiziente Such- und Mining Algorithmen unter einbeziehung

des multimodalen Kontextes analysiert.

Damit werden folgende Beiträge zum aktuellen Stand der Forschung geleistet. Ein

erster Beitrag besteht aus der Untersuchung der Anwendbarkeit vom itemset mi-

ning Algorithmen im Bereich der visuellen Daten. Diese Klasse von einfachen, aber

effektiven Algorithmen wurde bereits in anderen Gebieten erfolgreich angewendet.

Wir passen die Methoden an das Problem des Minings in Bilddaten an und zeigen

ihre erfolgreiche Anwendung um Objekte in Videos zu minen und um signifikante

Feature Konfigurationen als Repräsentanten für Objektklassen zu ermitteln.

Ein zweiter Beitrag besteht aus der Einführung einer multimodalen mining Methode,

welche vollautomatisch Objekte und Ereignisse aus Community Photo-Plattformen

aus dem Internet detektiert. Nach einem crawling Prozess basierend auf geo-referenzierten

Bildern, ermittelt die Methode Cluster von Bildern, welche das gleiche Objekt ab-

bilden. Im folgenden Schritt analysiert das System den multimodalen Kontext jedes

Clusters, insbesondere Textfragmente, die mit den Bildern im Cluster in Verbindung

stehen. Diese Analyse resultiert in einer Beschreibung des Clusters mittels Worten.

Die Methode findet ausserdem automatisch relevante Artikel aus Online Enzyklopdi-

en für die Cluster. Basierend auf diesen Daten wird ein System für Auto-annotation

von Photos auf dem Objektlevel eingeführt.

Der dritte und letzte Beitrag besteht aus mehreren Prototypen für Bildsuche unter

besonderer Berücksichtigung mobiler Endgeräte. Hier wird wieder der multimodale

Kontext berücksichtigt, beispielsweise mittels Einbezu der GPS Ortung des Benut-

zers.

Acknowledgements

I am grateful to a number of wonderful people who supported me during the time

this dissertation came into existence.

First and foremost I thank my advisor Prof. Dr. Luc Van Gool, for offering great

scientific freedom, and always being available when his invaluable expertise, guidance

and advice were required. Particular thanks go to Prof. Dr. Andrew Zisserman for

being aware of my work and agreeing to co-referee this thesis.

I received extraordinary support from Prof. Dr. Vittorio Ferrari and from Prof.

Dr. Bastian Leibe. Both were irreplaceable through their availability for countless

fruitful discussions, hands-on support in late nights before paper deadlines, and

being a constant source of motivation.

My colleagues at the Computer Vision Lab at ETH Zurich provided a joyful and

energetic atmosphere. Particular thanks go to Andreas Ess, Stephan Gammeter,

Raphael Hoever, Tobias Jaeggli, Alain Lehmann, Stefan Saur, and Thibaut Weise,

for being great pals.

I also thank my Semester and Diploma students, who made valuable contributions

to parts of this work.

I am particularly thankful to my friends at our startup kooaba. Being able to apply

and extend some of the research conducted in this thesis in a business is a unique

experience. This wouldn’t be possible without a fantastic group of people, especially

Dr. Herbert Bay, who had the courage to start this adventure with me in the first

place.

I thank the Sander family for providing not only a quiet and wonderful place to

write a large part of this thesis, but also making me feel at home.

I am eternally grateful to my parents Roswitha and Martin, for 30 years of love and

support, and my brothers Niels and Manfred, who are still my best friends. Finally,

my very special and heartfelt thanks go to Andra, without whom simply nothing

would be the same.

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 State of the Art in Object Recognition 2

1.2 Contributions of this thesis . 3

1.3 Organization of this thesis . 4

2 A Set of Tools 6

2.1 Local Feature Detectors and Descriptors 6

2.1.1 SIFT . 8

2.1.2 SURF . 9

2.1.3 Hessian-Affine . 9

2.1.4 MSER . 10

2.2 Clustering . 10

2.2.1 k-Means . 10

2.2.2 Hierarchical Clustering . 12

2.2.3 Measuring Cluster Quality . 13

2.3 Image Representation with Visual Words 14

2.4 Frequent Itemset Mining . 16

2.4.1 Frequent Itemset and Association Rules 17

2.4.2 Frequent Itemset Mining Algorithms 19

2.4.3 Interestingness Measures for Itemsets and Rules 22

2.5 Graph Mining . 24

2.6 Boosting . 27

2.6.1 Discrete Adaboost . 27

2.6.2 Classifier Cascades with Boosting 28

2.6.3 Adaboost Variants . 29

3 Frequent Itemset Mining in Visual Data 31

3.1 Introduction . 31

3.2 Mining Specific Objects in Video . 33

Contents vi

3.2.1 Shot Detection, Features and Visual Words 33

3.2.2 Video Mining Approach . 34

3.2.3 Mining an Entire Video . 36

3.2.4 Experiments and Results . 39

3.3 Mining Frequent Feature Configurations 44

3.3.1 Frequent Feature Configurations 46

3.3.2 Class-specific Feature Confidence 49

3.3.3 Experiments and Results . 51

3.4 From Frequent Configurations to Objects 57

3.4.1 Review of the ISM Approach 57

3.4.2 Recognition with Rule Activations 58

3.4.3 Experiments and Results . 60

3.5 Graph Mining as an Alternative to Itemsets 68

3.5.1 Mining of Frequent Feature Graphs 68

3.5.2 Classification using Boosting 72

3.5.3 Experiments and Results . 76

3.6 Related work . 83

3.7 Discussion and Conclusions . 85

4 Mining Objects and Events in large, multimodal Datasets 87

4.1 Introduction . 87

4.1.1 Outline of the chapter . 88

4.2 Community Photo Collections on the Internet 88

4.3 Mining Clusters . 92

4.3.1 Gathering the data . 92

4.3.2 Photo Clustering . 92

4.4 Labeling Clusters . 99

4.4.1 Classification into Objects and Events 99

4.4.2 Linking to Wikipedia . 100

4.5 Object-level Auto-Annotation . 102

4.5.1 Estimating Bounding Boxes for Objects 103

4.6 Experiments and Results . 106

4.6.1 Clusters . 106

4.6.2 Objects and Events . 109

4.6.3 Multimodal Linking to Wikipedia 111

4.6.4 Auto-annotation . 115

4.7 Related Work . 122

4.8 Discussion and Conclusions . 123

5 Retrieval in a Multimodal Context 125

5.1 The Query by Example Paradigm Revisited 126

5.2 Object Recognition for Mobile Devices 128

Contents vii

5.2.1 Mobile Interfaces . 129

5.2.2 Sample Applications . 134

5.2.3 Hyperlinked Slides: Interactive Meeting Rooms 135

5.2.4 Hyperlinked Buildings: A Cityguide on a Mobile Phone 140

5.3 Object Recognition for Web Applications 147

5.3.1 Auto Annotation for Community Photo Collections 148

5.3.2 Browsing Photos in 3D . 148

5.4 Detecting and Reading Text in Images 151

5.4.1 Text Detection Approach . 152

5.4.2 Features . 152

5.4.3 Classifier Training . 156

5.4.4 Detection and Reading . 157

5.4.5 Experiments and Results . 159

5.5 Related Work . 171

5.6 Discussion and Conclusions . 172

6 Scaling Retrieval 174

6.1 Introduction . 174

6.2 Datasets, Features, and Evaluation Metrics 175

6.3 Overview of Methods . 177

6.3.1 Locality Sensitive Hashing . 178

6.3.2 Redundant Bit Vectors . 178

6.3.3 Metric Trees . 179

6.4 Evaluation in terms of NN Search . 181

6.5 From NNs to retrieval in large databases 184

6.5.1 Forests of randomized metric trees 186

6.6 Evaluation on Large Datasets . 186

6.6.1 Computation Times and Scaling 189

6.7 Related Work . 190

6.8 Discussion and Conclusions . 191

7 Conclusions and Outlook 193

7.1 Contributions . 193

7.2 Perspectives . 195

A Amazon Example Results 198

Bibliography 201

Curriculum Vitae 213

List of Figures

2.1 Examples of local features. 7

2.2 Bag of Features approach . 15

3.1 Creating transaction from a neighborhood. 35

3.2 Motion groups. 37

3.3 Creating transactions. 38

3.4 Results for clip “Come into my World” (I) 40

3.5 Results for clip “Come into my World” (II) 41

3.6 Results for clip “Come into my World” (III) 42

3.7 Results for clip “Can’t get you out of my head”. 42

3.8 Results for clip “Come into my World” mined with 40-NN 43

3.9 Example of mined rules . 45

3.10 Neighborhood, activations, and transactions. 48

3.11 Discriminant Frequent Spatial Configurations 50

3.12 Results: Visual Examples. (See text for discussion.) 52

3.13 Bounding box hit rates . 54

3.14 False positives on negative images . 55

3.15 Performance per # tiles on TUD Motorbikes. 61

3.16 Recognition performance for minimal confidence values 62

3.17 Recognition performance for minimal support values 62

3.18 Recognition performance for rulelengths 63

3.19 Performance on UIUC . 65

3.20 Performance on TUD Motorbikes . 66

3.21 Examples of detections on the TUD motorbikes set. 67

3.22 Example image and resulting graph variants. 70

3.23 Examples of Retrieved Subgraphs on the TUD motorbikes dataset . . 73

3.24 Distribution of edge lengths . 76

3.25 Pseudo-Code: Training the Classifier 77

3.26 Pseudo-Code: Classification Procedure 77

3.27 Motorbike BBHR Curve . 78

3.28 Motorbike Activations . 79

3.29 Cars Activations . 80

List of Figures ix

3.30 ROC Curves of the motorbike-side class 81

3.31 ROC Curves of the cars-rear class . 82

4.1 Most popular tags on Flickr . 90

4.2 Tags and geotags on Flickr . 90

4.3 Tiles over Paris . 93

4.4 Number of photos per tile . 94

4.5 Feature matching with Homography 96

4.6 Histogram of visual distance values 97

4.7 Class examples . 99

4.8 Matching clusters to Wikipedia articles 102

4.9 Object-specific feature confidence values and bounding boxes (I) . . . 104

4.10 Object-specific feature confidence values and bounding boxes (II) . . 105

4.11 Clusters found around the Pantheon 107

4.12 Clusters around the Louvre . 109

4.13 Typical events mined by our methods. 110

4.14 Misclassified cluster example . 111

4.15 Object and event clusters on a map 112

4.16 A world tour with Flickr and Wikipedia 113

4.17 Precision within selected clusters. 114

4.18 Additional, surprising mining result 115

4.19 Auto-annotation of novel images . 115

4.20 Results of automatic object-level annotation 116

4.21 ROC curves for object-level annotation 117

4.22 Mean IOU values / ROC curves by cluster size 118

4.23 True positive detection examples . 120

4.24 False positive detection examples . 121

5.1 Time required to enter a keyword query on a mobile device 127

5.2 SIFT and SURF on a mobile Phone 130

5.3 Client software for the cityguide application 132

5.4 Screenshots of our real-time, server side object recognition system . . 133

5.5 Motion detection for a mobile visual search interface 135

5.6 Typical presentation slides from the AMI corpus database 136

5.7 The user ”tags” a presented slide using our mobile application 136

5.8 Geometric verification with a homography 139

5.9 Examples of query images . 140

5.10 Virtual highlighting of slides . 141

5.11 Client software for the cityguide application 143

5.12 Result images for the city-guide application 145

5.13 Recognition rate, and matching time vs. radius around query location 147

5.14 Interface for annotation . 148

List of Figures x

5.15 Examples of 3D reconstruction from community photo collection data 150

5.16 Examples of text in natural scenes 151

5.17 Block based features are parameterized by their location and size. . . 153

5.18 The intensity based features used. 153

5.19 Counting the number of vertical edges inside the horizontal stripe. . . 154

5.20 Parameterization of the scanlines. 156

5.21 Annotation Sample . 156

5.22 Different thresholding methods. 159

5.23 Detection results on Flickr . 161

5.24 Visual Results: Text Detection examples. 162

5.25 Feature Selection and Combination by Adaboost. 163

5.26 Two difficult text areas from the ICDAR trial test set. 163

5.27 Examples of false positive text detections. 164

5.28 Example text detections (I) . 165

5.29 Example text detections (II) . 166

5.30 Example text detections (III) . 167

5.31 Comparing different OCR engines. 167

5.32 A sample image from the low quality dataset. 168

5.33 Results with different binarization methods. 169

5.34 Guessing location from text in images. 170

6.1 Query image and three true positives 177

6.2 Quality of NN search: Effective Distance Error 182

6.3 Quality of NN search: Fraction of True Nearest Neighbors 183

6.4 True NN vs. ranking score and mAP vs. number of near neighbors . 185

6.5 Forests of metric trees . 187

A.1 Amazon Example Results (I) . 199

A.2 Amazon Example Results (II) . 200

List of Tables

2.1 Example: Transactions from a store 19

3.1 Motion Segmentation and 40-NN mining methods compared. 43

3.2 Statistics for the mining experiments 55

3.3 Mining statistics for the experiments 64

3.4 Edge-Labeling Method A . 69

3.5 Edge-Labeling Method B . 69

3.6 Comparison of FSG, CloseGraph and Moss/MoFa 71

3.7 Soft assignment error rates on training set 75

3.8 Parameter variation for the motorbikes-side-class 79

4.1 Tag statistics . 89

4.2 Urban areas processed in this work 94

4.3 Cut-off distances for clustering . 98

4.4 Dataset statistics . 106

4.5 Summary of Pantheon Results . 108

5.1 Capabilities of typical mobile phones 130

5.2 Summary of recognition rates for slide database 140

5.3 Cell Global Identity . 142

5.4 Summary of recognition rates for cityguide 146

6.1 Dataset Statistics . 176

6.2 Evaluation of forests on various tasks 188

6.3 Computational Performance . 189

1
Introduction

“Where is the wisdom we have lost in knowledge? Where is the knowledge we have

lost in information?” T. S. Eliot, The Rock (1934)

Understanding the contents of an image is one of the fundamental problems of

Computer Vision research. It is also a topic of increasing importance. While at

the beginning of this thesis in the year 2004 around 50 million digital cameras were

sold, the number is expected to surpass 100 million devices this year. Hundreds of

millions of cameras in use produce a large amount of digital photos. People share

these photos on digital platforms on the Internet, allowing millions of visitors to

access their photo collections.

Computer Vision methods can simplify access to the data in these large visual

repositories. Especially methods which allow for identification of objects in images

are useful tools for easing organization and search. The analysis of images at the

object-level is typically divided into two subtasks: detection of specific objects and

object class detection. A specific object could for instance be a landmark building

such as the Eiffel tower, or a specific car. Examples of occurrences of object classes

are the presence of a building or a car in an image, no matter which building or

which kind of car.

Research in both fields has made significant progress in recent years. This thesis

builds on this research and tries to extend it towards applications in the context of

the Internet. This endeavor comes with several open questions. The first challenge is

posed by the large amounts of data. Methods which can be applied to larger amounts

of data have to be efficient and scalable. We thus attempt to employ methods from

data mining for the task of object detection. These methods are known to scale

in other fields, but are somewhat simpler than methods commonly used for object

detection. This raises the question, if they can compete with the state-of-the-art in

object detection.

Another unique characteristic of the visual data shared on the Internet is that it

is often embedded in a multimodal context. A photo has been taken by a certain

1.1. State of the Art in Object Recognition 2

user, at a certain location and time. This is particularly relevant for photos taken

with mobile phone cameras. Furthermore, images are often embedded in text or

sometimes labeled with keywords. Can we exploit this multimodal redundancy of

descriptions to learn objects and their descriptions from the data? This is the second

question we investigate in this thesis.

Finally, apart from all scientifically motivated interest in the recognition of objects in

images, we also want to let real-world applications drive our research. Relating to the

introductory quote of this dissertation, the constant flow of digital information on the

Internet poses challenges to us as individuals. Enormous amounts of information are

only a mouse click away, but the efficient extraction of desired or relevant information

is an increasingly difficult task. Thus, we try to create prototypes of applications,

which help us to analyze and search large repositories of visual data. With the hope,

that they might eventually lead to applications, which assist us in gaining knowledge

from the constant information flow we are faced with every day.

1.1 State of the Art in Object Recognition

While the topics dealt with in this thesis cover a variety of fields, the common

denominator is always the goal of recognizing objects in images. In that sense, this

dissertation builds on over 40 years of research. What follows is a brief summary of

the field, with the intent to give the reader a general orientation in this rather wide

area of research. Throughout the thesis, we will discuss more specific related work

at the end of each chapter.

Object recognition methods can be roughly classified into geometry based and ap-

pearance based method. Geometry based approaches try to model the (3D) char-

acteristics of objects using global object properties, most commonly the object’s

contours. The task of detecting the an object then corresponds to identifying the

model and its pose, which might have generated the features observed in the im-

age. Notable works using this paradigm include [Grimson and Lozano-Pérez, 1987;

Wolfson and Rigoutsos, 1997; Lowe, 1991]. The main disadvantages of model-based

methods include the requirement of a possibly rather complex 3D model and the

difficulty in detecting and interpreting its (contour-based) features. These are prob-

ably some of the reasons why recent research has focussed mostly on appearance

based methods.

Appearance based methods are further subdivided into global appearance methods

and local appearance methods. Both have in common that they don’t rely on a 3D

model for recognition, but base recognition on (sample) images of the object only.

Global methods attempt to derive a compact representation of the objects appear-

ance from an entire image, e.g . by so-called eigenimages (dimensionality reduced

1.2. Contributions of this thesis 3

representations of the images in a manifold) [Murase and Nayar, 1995], by matching

templates [Dufour et al., 2002], or color histograms [Swain and Ballard, 1991].

The disadvantages of the global appearance based methods are, that they are not

robust to clutter in a scene and partial occlusions of the object. Local appearance

methods try to overcome these challenges by treating an object as a collection of

localized parts, or local features. Each local feature is expressed as a descriptor

vector of the appearance of the corresponding image part. (A more detailed de-

scription of common local feature types is given in Chapter 2.1). A database of

model images is then represented as a collection of these vectors. The presence of

a database object in a query images is determined by first extracting local features

from the query image, and then searching for the nearest neighbor of each local

feature patch in the database. The collection of matched features will cast votes

for a particular object in the database. By relying on local image patches this ap-

proach is robust toward occlusion and clutter. Relying on geometric constraints for

the possible location of features in the image plane can further improve recognition.

Examples of early works building on this paradigm are [Schmid and Mohr, 1997;

Lowe, 1999]. Later on, local appearance based features were not only used to recog-

nize specific objects, but also to recognize the presence and even localize instances

of object classes in images [Weber et al., 2000a; Agarwal and Roth, 2002]

Local appearance based methods are at the heart of most state of the art object

recognition methods and are also the basis for the research carried out in this thesis.

Thus, a more detailed discussion of the more recent work in this field is given in

Chapter 2.3.

1.2 Contributions of this thesis

The work at hand advances the state-of-the-art in object-level retrieval and mining

with three main contributions. Firstly, with the investigation of itemset mining

algorithms in the domain of visual data. This class of simple, but efficient algorithms

have proven to be a useful tool for other kinds of data. We adapt these methods to

work with local visual features. The resulting algorithms are successfully employed

to mine specific objects in video data, and to identify frequent feature configurations

as representatives of object classes.

The second contribution consists of a multimodal data-mining method, which au-

tomatically mines objects and events from community photo collections on the In-

ternet. After crawling geotagged photos, the method automatically clusters photos

showing the same object or event using visual features. The system then proceeds

with analyzing the multimodal context of each identified cluster, in particular text

associated with the individual photos. This analysis results in a textual description

1.3. Organization of this thesis 4

of the clusters. Furthermore, it is used to identify related Wikipedia pages. Finally,

building again on the mined visual data, this assignment is verified, and refined up

to an object-level annotation of mined entities for applications such as retrieval or

auto-annotation.

The third and final contribution consist of several prototype applications for scalable

retrieval in visual data, partly building on the data mined in the previous steps.

These retrieval applications focus on applications for mobile devices, again including

multimodal context such as GPS location of the user. In addition to the mobile

retrieval applications, novel web-and desktop applications are designed, for browsing

and auto-annotation in personal photo collections.

1.3 Organization of this thesis

This thesis is organized as follows:

Chapter 2 introduces various basic methods and algorithms which are important

throughout this work. Most importantly they include local visual feature types,

and a more detailed discussion of local appearance based methods for object (-class)

detection, with a special emphasis on visual vocabulary based approaches.

Chapter 3 describes our work with itemset mining algorithms in the domain of

visual data. The goal here is to come up with a method for efficient detection of

re-appearing structures of local features, using data-driven mining algorithms rather

than explicit model learning. The resulting methods are applied to and evaluated

on tasks in video mining and object class detection using standard benchmark data.

Chapter 4 takes mining from the feature level to the object level. We introduce

a method to mine objects and events from community photo collections on the

Internet. The approach relies on geotagged photos, which are clustered based on

their similarities calculated from local feature matches. Beyond the visual cues

we extend our mining method to include cues from other modalities such as the

textual tags describing the photos. This allows for labeling of the mined objects

and events. Furthermore, using multimodal information from Wikipedia, we relate

Wikipedia articles to the identified object clusters using a multimodal matching and

verification procedure. Finally, we demonstrate how the mined data can be used to

derive object-level auto-annotations of objects such as landmark buildings in holiday

snaps. Experiments are conducted on hundreds of thousand of photos downloaded

from the Internet.

1.3. Organization of this thesis 5

Chapter 5 deals with the user- or application-centric aspect of object recogni-

tion. We demonstrate several prototypes for object recognition applications, with a

special focus on mobile devices. Several options for user interaction with the system

are investigated. The mobile applications are complemented with two applications

for the desktop or the web, namely auto-annotation and 3D reconstruction – both

applications build directly on the results from Chapter 4. Finally, we introduce a

method to localize and read text in natural images, with the goal, to make this

information also accessible to visual retrieval systems.

Chapter 6 discusses methods which allow to scale object-level retrieval to large

amounts of data in the order of up to 1 million images. We investigate, which

properties make nearest neighbor search for databases of local features different

from “general purpose” nearest neighbor search. We then evaluate three methods

(LSH, Redundant Bit Vectors, and Metric Trees) under that aspect. Metric trees are

further extended to form forests of metric trees and their performance is compared

to state of the art visual vocabulary based methods.

Chapter 7 concludes by discussing the results of our work and pointing out further

research directions based on our findings.

Since our work touches several independent research areas, each of the main chapters

4−6 contains a section discussing related work specific for the topic of that chapter.

2
A Set of Tools

In this chapter we introduce some basic tools and algorithms we build on through-

out our work. They include local feature extractors and descriptors, clustering

algorithms, visual vocabularies, itemset and mining methods, and classifier boost-

ing.

2.1 Local Feature Detectors and Descriptors

The introduction of very powerful local visual features in the late 90’s is probably

one of the main reasons for the astonishing progress the field of computer vision

has made in recent years. Unlike global features (e.g . variations of global color

histograms or texture features), which describe the entirety of an image with a

single feature vector, local features decompose the image into localized image patch

descriptors around interest points. An example is shown in Figure 2.1. Selecting the

“right” image patches, and describing them in a “meaningful” way is the important

contribution of the research that led to the local features we can build on in our work.

Describing an image with local features typically consists of two steps: interest point

detection, and construction of a descriptor for the image patch around the interest

point.

A good interest point detector locates points, that can be detected repeatedly, even if

the original image is modified or the same scene is depicted under varying conditions.

Such variations include e.g . viewpoint changes (angle, zoom, etc.), lighting changes,

or image compression. The main criterion to judge the quality of an interest point

detector is thus its invariance to those perturbations, which is typically measured

with a repeatability value [Mikolajczyk and Schmid, 2004a], expressing if the same

interest point can be reliably detected at the same position, even after an image

has undergone transformations. While locating “interesting” points in images has

a long history in computer vision (e.g . with Harris corners [Harris and Stephens,

1988]), achieving discriminance, reliable localization, and robustness to scale or affine

2.1. Local Feature Detectors and Descriptors 7

Figure 2.1: Examples of local features. SIFT, SURF, MSER, and Hessian-Affine

(clockwise from top-left).

changes is quite challenging. A good overview and comparison of some of the most

well-known interest point detectors can be found in [Mikolajczyk and Schmid, 2004a;

Mikolajczyk et al., 2005; Tuytelaars and Mikolajczyk, 2008].

After localizing an interest point, a region around it is usually encoded using a

descriptor vector, e.g . based on the histogram of gradients observed in the image

patch. The most important quality criteria for descriptors are a compact represen-

tation and high precision and recall when matching descriptors from a database of

images (i.e. finding the right point correspondences and finding all point correspon-

dences). An evaluation of some of the most well-known interest point descriptors

can be found in [Mikolajczyk and Schmid, 2005].

Comparing two images using local features boils down to the execution of the fol-

lowing steps:

1. Feature extraction: extract interest points and their descriptors.

2. Feature matching: for each interest point find its corresponding features in

the other image, or from a database of images. This involves often finding the

2.1. Local Feature Detectors and Descriptors 8

nearest neighbor(s) of a feature descriptor from a large database of reference

images.

3. Recognition: based on the number and location of the matches decide, if the

two images show the same object or scene. This step can include further verifi-

cation using a model, either specific to an object(-class) or general verification

models, e.g . multiple view geometry.

Steps 2 and 3 are known as the correspondence problem. While most of this thesis

focuses on the third step, we also have a look at feature matching in Chapter 6,

where we discuss options for scalable retrieval from large databases of local features.

The basic processing pipeline above has a variety of additional or modified steps

depending on the application it is deployed for. Such applications include:

• 3D Reconstruction

• Image Mosaicking

• Object Recognition

• Object Class Recognition

• Image and Video Retrieval

Below we summarize the properties of some of the local feature types used in this

thesis. They include features, which are invariant to scale changes (SIFT [Lowe,

2004] and SURF [Bay et al., 2006b]) as well as features, which are invariant to affine

changes (MSER [Matas et al., 2002] and Hessian-Affine [Mikolajczyk and Schmid,

2004a]).

2.1.1 SIFT

SIFT (Scale Invariant Feature Transform) [Lowe, 2004] consists of both an interest

point detector and descriptor. SIFT is scale and rotation invariant.

The interest point detector builds – as most other approaches for interest point

detection – on scale-space theory, to obtain a scale-invariant interest point. This

involves convolving the image with a Gaussian at several scales, creating a so called

scale space pyramid of convolved images. Interest points are now detected by select-

ing points in the image, which are stable across scales. In the case of SIFT this is

done using a Difference-of-Gaussians (DoG) approach, where the convolved images

at subsequent scales are subtracted from each other. (The DoG approach is in fact

simply an approximation of the Laplacian). Stable points are searched in these DoG

2.1. Local Feature Detectors and Descriptors 9

images by determining local maxima, which appear at the same pixel across scales.

Afterwards, several refinement steps are applied, to select the most robust points

(e.g . eliminating edge responses etc.). Finally, the most dominant orientations are

determined, by creating a radial histogram of gradients in a circular neighborhood

of the detected point. The maxima from this histogram determine the orientation

of the point, and thus enable rotation invariance.

For the descriptor, around each interest point a region is defined, divided into ori-

entation histograms on (4 x 4) pixel neighborhoods. The orientation histograms

are relative to the keypoint orientation. Histograms contain 8 bins each, and each

descriptor contains a 4x4 array of 16 histograms around the keypoint. This leads to

a SIFT feature vector with (4 x 4 x 8 = 128 elements). This vector is normalized

to enhance invariance to changes in illumination.

2.1.2 SURF

SURF [Bay et al., 2006b] is a particularly fast and compact method. Just like SIFT,

SURF is scale- and rotation invariant.

The interest point detector used by SURF is based on the Determinant-of-Hessian

(DoH) blob detector. However, just as SIFT uses DoG as an approximation of

the Laplacian, SURF uses a more efficient approximation of the Hessian. This is

done using a courageous approximation of the Gaussian second order derivatives of

the Hessian detector with simple box filters. Using box filters allows using integral

images [Viola and Jones, 2001b] for efficient computation.

Just like its detector, the SURF descriptor is tuned for efficiency. It calculates a set

of simple Haar-like features in sub-regions of a rectangular neighborhood around an

interest point. As in the case of SIFT, this is done after determining a dominant

orientation and expressing the descriptor in relation to that orientation to achieve

rotation invariance. The Haar-like feature responses can again be calculated very

efficiently using integral images.

2.1.3 Hessian-Affine

Hessian Affine interest point detectors [Mikolajczyk and Schmid, 2004a] belong to a

class of so-called affine-covariant detectors, which are not only invariant to scale and

rotation, but can even cope with affine changes. The main concept of these detectors

is to find first a stable interest point in scale-space as with the methods described

above, but afterwards to fit an elliptical region around the interest point. (Instead

of a square or circle). This ellipse adapts – i.e. is covariant – with affine changes

2.2. Clustering 10

of the underlying image structures. For Hessian-Affine detectors, the shape of this

ellipse is determined with the second moment matrix of the intensity gradient.

Note, that the Hessian-Affine method is an interest point detector only, and does

not come with it’s own descriptor. It is thus typically combined with other de-

scriptors, such as SIFT. The descriptor is extracted on a normalized region for all

interest points, e.g . the ellipses are transformed into a circle, before the descriptor

is calculated on the pixels within this circle.

2.1.4 MSER

MSER (Maximally Stable Extrema Regions) [Matas et al., 2002] also belong to the

class of affine-covariant detectors. They are not based on one of the ’standard’

Gaussian scale space methods, but are based on connected components of an appro-

priately thresholded image. The word extremal refers to the property that all pixels

inside the MSER have either higher (bright extremal regions) or lower (dark ex-

tremal regions) intensity than all the pixels on its outer boundary. The maximally

stable in MSER describes the objective optimized during the threshold selection

process: while changing the threshold value, these regions’ binarization stays stable

over a range of threshold values. “Maximally stable” is defined as the local minimum

of the relative area change as a function of relative change of threshold.

Just as with the Hessian-Affine detectors, an ellipse can be fitted to the output

regions of the detector, and after normalization, a region descriptor such as SIFT

can be calculated on the pixels in the region [Mikolajczyk et al., 2005].

2.2 Clustering

Data clustering involves partitioning a data set into groups of related items. The

type of partitioning an algorithm is trying to achieve, and the strategy it uses to

reach its goal depend strongly on the kind of data. Here, we consider clustering

algorithms, which can operate with vector data. Their goal typically consists of

identifying areas of high density (i.e. agglomerations of data points) in the space

and forming clusters around them. Throughout our work we apply two of the most

popular clustering methods, namely k-Means and hierarchical clustering, which are

described in the following.

2.2.1 k-Means

One of the best known and widely used clustering algorithms is the k-Means algo-

rithm [MacQueen, 1967]. It finds a partitioning of N points from a vector space

2.2. Clustering 11

into k < N groups, where k is typically specified by the user. The objective it tries

to achieve is to minimize total intra-cluster variance, or, the squared error function

V =
k∑

i=1

∑
xj∈ci

(xj − µi)
2

where there are k clusters ci, i = 1 . . . k, and µi is the mean of all the points xj ∈ ci.

The most common form of the algorithm uses an iterative refinement heuristic known

as Lloyd’s algorithm. The algorithm starts with an initialization of k centroids as

representatives for the clusters. Based on a distance measure (the L2 Norm is the

correct distance to minimize the objective function, but other distances are often

used, nevertheless), it assigns all points in the dataset to their closest centroid. Then

it recalculates the centroid of each cluster as the mean of all data-points in the clus-

ter. These steps are repeated until no points change clusters or a threshold (number

of iterations, change of V) is reached. It’s simplicity and rather fast execution times

make k-Means a popular clustering algorithm.

While k is the only parameter that needs to be specified for k-Means, its choice is

not trivial, in particular since it affects the outcome of the clustering result greatly.

A common way to work around this problem is to just try several values for k.

However, for large datasets this approach is too time-consuming because k can vary

in a wide range (we might need a clustering with thousands of partitions) and the

runtime of the algorithm for each k obviously increases with increasing number of

datapoints N . (The time-complexity of the k-Means algorithm is O(Nkld) for N

datapoints of dimension d, and l iterations).

Another challenge is the initialization of the algorithm, which also has a substantial

impact: for different initializations the algorithm may reach different results. k-

Means is known to be vulnerable to getting stuck in local minima. It is not trivial

to avoid this, so a common simple solution is to start the algorithm with different

initializations and to keep the best outcome. Common variants of initialization

include picking k random data-points, or stepwise selection of the farthest away

data-point, beginning with the origin (“ping-pong” initialization).

Many improvements of the standard k-Means algorithm have been suggested [Farn-

strom et al., 2000; Elkan, 2003; Pelleg and Moore, 1999; 2000]. They either use

efficient data structures or improve runtime and memory requirements by reducing

the number of distance calculations based on some approximation criteria.

We tested the algorithm described in [Farnstrom et al., 2000]. It is a single-pass

algorithm with a buffer, i.e. it can work with limited memory and uses only one pass

over the data-set. This is achieved by moving points, that wont change their cluster

with high probability from memory to a retained set on the hard drive. However, it is

an approximate method, which does not deliver the exact same results like standard

2.2. Clustering 12

k-Means. (The method is related to the class of stream clustering algorithms, which

build on the notion that data is received as a constant stream and can only be read

once from a buffer).

Another method which significantly speeds up the exact k-Means algorithm (in par-

ticular for high values of k) is described in [Elkan, 2003]. Here, lower bounds of

distances are determined based on the triangle inequality to avoid distance cal-

culations. While the speed-up is impressive, it is traded for memory usage: The

implementation requires keeping track of distance bounds in a table of dimensions

N × k.

In our work we use k-Means mostly to cluster local visual features into so-called

visual vocabularies, see Section 2.3 of this chapter and Chapter 6.

2.2.2 Hierarchical Clustering

Unlike k-means, hierarchical clustering methods don’t create clusters by iteratively

climbing towards dense areas in feature space, but rather try to merge pairs of

items and clusters successively, starting with the closest until some cutoff criterion

is reached.

The clustering process begins by calculating all pairwise distances between data

items i, j j ∈ N . Then, starting with the smallest distance, pairs of items or

clusters are merged. This way, a hierarchical cluster tree, or dendrogram, is created.

On this dendrogram, clusters can be identified by “pruning” the tree at a certain

level.

While merging pairs of clusters, the question arises, how the distance between two

clusters A,B should be defined. In fact, there are several measures, the most popular

being:

single-link: dAB = min
i∈A,j∈B

dij

complete-link: dAB = max
i∈A,j∈B

dij

average-link: dAB =
1

ninj

∑
i∈A,j∈B

dij

Single-link merges clusters based on the distance of the two closest items in each

cluster, complete link is based on the distance of the two items farthest away from

each other, and finally, average-link takes the average distance as a criterion. Which

distance measure is appropriate depends on the application.

The advantage of hierarchical clustering over k-Means is, that it can be applied to

any kind of data, where a distance between two items can be defined. (Thus, also

2.2. Clustering 13

any distance measure can be used). The main disadvantage is, that it relies on

a calculation of pairwise distances between all items, which is O(N2). There are

optimizations available, e.g . [Leibe et al., 2008] rediscovered an optimized version

for average link clustering [Benzécri, 1982; de Rham, 1980], which runs in O(N2d)

and needs only O(N) space. They use it successfully for clustering image feature

descriptors into visual vocabularies (Section 2.3).

2.2.3 Measuring Cluster Quality

When clustering data and possibly comparing several methods, the question arises,

how the quality of the clustering result should be measured. There are two main

options: either one uses some general statistical quality measure for the clusters

(compactness etc.), or, if the clustering module is part of a larger processing pipeline,

measure its effect on the output of the whole system.

The latter is the most pragmatic, but requires that a full system is in place and the

result may be specific to that system. Furthermore, if a large range of parameters

has to be varied, evaluation becomes very time consuming. On the other hand,

when using a statistical measure, it can only measure certain properties, which may

or may not correlate with the effect on a complete system.

As an example, we mention one statistical measure, which we also use in Chapter 3,

namely the Silhouette. For a given cluster, Xj(j = 1, . . . , N), this method assigns

to each sample of Xj a quality measure, s(i)(i = 1, . . . , m), known as the Silhouette

width. The Silhouette width is a confidence indicator on the membership of the

ith sample in cluster Xj. The Silhouette width for the ith sample in cluster Xj is

defined as:

s(i) =
a(i)− b(i)

max(a(i), b(i))

where a(i) is the average distance between the ith sample and all of the samples

included in Xj and b(i) is the minimum average distance between the ith sample

and all of the samples clustered in Xk (k = 1, . . . , c; k 6= j). From this formula it

follows that −1 ≤ s(i) ≥ 1 . When a s(i) is close to 1, one may infer that the i-th

sample has been well clustered, i.e. it was assigned to an appropriate cluster. When

a s(i) is close to zero, it suggests that the i-th sample could also be assigned to the

nearest neighboring cluster. If s(i) is close to 1, one may argue that such a sample

has been misclassified. Thus, for a given cluster, Xj (j = 1, . . . , c), it is possible to

calculate a cluster Silhouette Sj, which characterizes its heterogeneity and isolation

properties:

Sj =
1

m

m∑
i=1

s(i)

where m is number of samples in Sj.

2.3. Image Representation with Visual Words 14

Calculating the silhouette is computationally quite demanding for large datasets.

2.3 Image Representation with Visual Words

The bottleneck of the recognition pipeline described in Section 2.1 is often its second

module, feature matching. This is due to several reasons. Firstly, if the number of

images in a database is large (possibly hundred of thousands of images) determining

matching features for a query feature by calculating its nearest neighbors becomes

infeasible in reasonable time. Several methods for fast nearest neighbor search exist,

and have also been applied to this problem (e.g . [Lowe, 2004] uses an optimized kd-

tree). However, many of these approaches work well only in low dimensional spaces,

and also suffer from another problem: finding matches for local image features is

not necessarily solved best by simply finding the nearest neighbor. It is rather a

bounded nearest neighbor search problem, where the bounds may depend both on

the application (e.g . object class detection versus detection of specific objects) and

even on the “meaning” of an individual feature. Some features may describe a

more specific element, some of them a more general one, i.e. the density of a set of

matching features in the vector space cannot be described with the same parameter

for all features.

Thus, several works [Weber et al., 2000a; Dance et al., 2004; Fergus et al., 2003; Leibe

and Schiele, 2003] have proposed grouping features into so called visual vocabularies.

Images are then represented as bags of visual words1 or bags of features, i.e. groups

or clusters of features describing the same visual primitive element. All features

assigned to the same visual word are deemed matched. This representation is similar

to a bag of words, used in document analysis and text retrieval.

Visual vocabularies are typically obtained by clustering the feature descriptors in

high dimensional vector space. The dataset (or a sample) is clustered into k repre-

sentative clusters, where each cluster stands for a visual word. The resulting clusters

can be more or less compact, thus representing the variability of similarity for in-

dividual feature matches. The value of k depends on the application, ranging from

a few hundred or thousand entities for object class recognition applications up to

1 million for retrieval of specific objects from large databases. This shows how the

clusters are used to form a vocabulary with more or less variability in the individual

visual words: in object class recognition, the individual instances of a class can have

large variations, while in retrieval for specific objects very similar features have to

be found.

The complete process for encoding an image with a visual vocabulary is summarized

in Figure 2.2. Features are clustered into a visual vocabulary. Each feature is then

1a bag is the same as a multiset, i.e. a set where multiple occurrences of an item are considered

2.3. Image Representation with Visual Words 15

(a) (b) (c)

Figure 2.2: Bag of Features approach: The features from a database of images

(a) are clustered into a visual vocabulary. Each cluster is represented by an id, the

visual word (b). The features of any image are then represented by the id of their

closest cluster (c).

assigned to its closest cluster. The image is now represented as a set of regions,

which carry as a label the visual word id, instead of a high dimensional descriptor

vector. In other words, the image can now be encoded as a histogram over the

visual words appearing in the image. Matching two images now consists simply

of comparing their visual word ids, or correlating their histograms. In a retrieval

scenario, where a query image is compared to the images in a database, matching

consists now of finding the closest visual word for each feature, instead of finding

the nearest neighbor from the whole database. This is much more efficient, since

typically k << N for k clusters forming the visual vocabulary and N features in the

database.

For image and video retrieval based on visual vocabularies often several additional

methods are borrowed from text retrieval [Salton and McGill, 1986], e.g . the most

frequent and infrequent visual words are removed from the images using a ‘stop-list’,

or the features are ranked using a tf ∗ idf variant, weighting frequently occurring

features lower.

Using visual vocabularies has been successful in video retrieval [Sivic and Zisserman,

2003] and many approaches in object class recognition [Weber et al., 2000a; Agarwal

and Roth, 2002; Dance et al., 2004; Fergus et al., 2003; Leibe and Schiele, 2003].

For clustering, most often k-Means is used, but other methods are used, too, e.g .
[Leibe and Schiele, 2003] use a hierarchical agglomerative method, which results in

better clustering results for their application.

Historically, vocabulary representations have been around for some time before they

were used in combination with local features, e.g . for texture analysis the textons

2.4. Frequent Itemset Mining 16

by [Leung and Malik, 2001] or face recognition [Wiskott et al., 1997]. The ear-

liest uses for categorization or detection of “arbitrary” objects were probably the

ones by [Burl et al., 1998; Weber et al., 2000b; Agarwal and Roth, 2002]. Many ap-

proaches have used variations of this theme since, e.g . [Weber et al., 2000a; Fergus et

al., 2003; Fei-Fei et al., 2003; Agarwal and Roth, 2002; Borenstein and Ullman, 2002;

Feltzenswalb and Hutenlocher, 2005; Dance et al., 2004; Leibe and Schiele, 2003;

Sivic and Zisserman, 2003]. Various details and directions are explored in these

works, e.g. various applications (retrieval or classification), types of clustering (k-

means, hierarchical clustering), manual selection of primitive parts rather than clus-

tering, determining the optimal number of clusters, investigation of the clusters in

the feature spaces, etc.

We use variations of these visual vocabularies in many parts of this work. In Chap-

ter 3 we mine configurations of visual words using itemset mining methods. Note,

that in this context we treat images as sets of features, and not as bags of features,

i.e. every occurrence of a visual word is only counted once. This is an approxi-

mation, which is justified by several reasons: first, multiple occurrences of a visual

word often stem from non discriminative, repeated patterns. Second, we typically

create a histogram of visual words from a localized neighborhood and not from the

entire image. Here, considering multiple occurrences of the same feature is even less

important.

In Chapter 6 we look at retrieval from large databases of local features in more

detail. We use both nearest neighbor and visual vocabulary based approaches and

investigate several properties of the image matching process using local features.

2.4 Frequent Itemset Mining

Frequent itemset mining is a very popular family of methods to detect the joint

occurrence of certain items from a large body of data. They have their origin in

market basket analysis, where large databases of customer transactions have to be

analyzed to gain insights into the buying habits of shoppers. A typical desired

insight could be of the form: 90% of customers who buy bread also buy milk. In

a physical store this insight would allow placing certain articles next to each other

to generate higher sales. In on-line stores, this enables making buying suggestions

based on items already placed in the shopping basket. This particular feature is

very common for book or music recommendation on platforms such as amazon.com.

Market basket analysis was the main application considered in the first publications

on itemset mining [Agrawal et al., 1993], however, the same kind of problem has been

analyzed in various other contexts since. This includes web usage mining [Cooley

et al., 1993], robust collaborative filtering [Sandvig et al., 2007], fraud detection in

2.4. Frequent Itemset Mining 17

on-line advertising [Metwally et al., 2005], document analysis [Holt and Chun, 1999]

or massive recommendation systems for related search queries [Li et al., 2008a].

The remainder of this section is structured as follows: we start with a formulation

of the itemset mining problem, then discuss several algorithms, which solve the

problem efficiently, and finally look at some alternative quality measures for the

mining results.

2.4.1 Frequent Itemset and Association Rules

Here we summarize the relevant definitions and terminology for frequent itemsets

and association rules.

Let I = {i1 . . . ip} be a set of p items. Let A be a subset of I with l items, i.e.

A ⊆ I, |A| = l. Then we call A a l-itemset.

A transaction is an itemset T ⊆ I with a transaction identifier tid(T). A transaction

database D is a set of transactions with unique identifiers D = {tid(T1) . . . tid(Tn)}, tid(Ti) 6=
tid(Tj) ∀ {i, j} ∈ I | i 6= j.

We say that a transaction T supports an itemset A, if A ⊆ T . We can now define

the support of an itemset A in the transactions-database D as follows:

Definition 2.4.1 (Support of an itemset). The support of an itemset A ∈ D is

support(A) :=
|{T ∈ D | A ⊆ T}|

|D| ∈ [0, 1]

Conversely, for each itemset we can also find the transactions, which support the

itemset:

Definition 2.4.2 (Cover of an itemset). The cover of an itemset A in D consists

of the set of transaction identifiers of transactions in D that support A:

cover(A,D) := tid(T) | (T ∈ D, A ⊆ T).

When mining itemsets, we are interested in those sets, that occur frequently in the

database:

Definition 2.4.3 (Frequent itemset). An itemset A is called frequent in D if support(A) ≥
s where s is a threshold for the minimal support defined by an expert.

Two special types of frequent itemsets are also often discriminated in the literature:

2.4. Frequent Itemset Mining 18

Definition 2.4.4 (Closed itemset and maximal itemset). A frequent item set A is

called closed if no superset has the same support. A frequent item set A is called

maximal if no superset is frequent.

After mining frequent itemsets, one is often interested in the statistical dependence

between the individual items or subsets that form a set. These dependences are

typically expressed in the form of association rules.

Definition 2.4.5 (Association rule). An association rule is an expression A → B

where A and B are itemsets (of any length) and A ∩B = ∅.

The quality or interestingness of a rule is typically expressed in the support-confidence

framework, which was introduced in [Agrawal et al., 1993].

Definition 2.4.6 (Support of a rule). The support of an association rule A→ B is

supp(A→ B) := supp(A ∪B) =
|{T ∈ D|(A ∪B) ⊆ T}|

|D|

In other words, the support of a rule is the support of the joined itemsets that make

up the rule. The support of a rule measures its statistical significance.

Definition 2.4.7 (Confidence of a rule). The confidence of an association rule

A→ B is

conf (A→ B) =
supp(A ∪B)

supp(A)
=
|{T ∈ D|(A ∪B) ⊆ T}|
|{T ∈ D|A ⊆ T}|

The left-hand side of a rule is called antecedent, the right-hand side is the consequent.

The confidence is a measure of the strength of the implication A → B. Note that

the confidence can be seen as a maximum likelihood estimate of the conditional

probability that B is true given that A is true [Hand, 2001].

To get a feel for the application of these measures, let’s consider a simple example:

Example 2.4.1. The classic application for association rules is market basket data

analysis. In this context, an itemset refers to a set of products. A transaction

is the set of products bought by a particular customer. Consider the transactions

in table 2.1. Suppose we want to find support and confidence of the famous rule

{Diaper,Milk} → Beer:

support({Diaper,Milk} → Beer) =
support{Diaper,Milk, Beer}

|D| =
2

5
= 0.4

confidence({Diaper,Milk} → Beer) =
support{Diaper,Milk, Beer}

support{Diaper,Milk} = 0.66

2.4. Frequent Itemset Mining 19

TID Items

1 Bread, Milk

2 Beer, Diaper, Bread, Eggs

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Bread, Diaper, Milk

Table 2.1: Example: Transactions from a store

That means, if a customer has already diapers and milk in his shopping basket, with

66% probability he will also buy beer.

In summary, the task that itemset mining algorithms have to solve is, given a min-

imal support threshold s, to detect all frequent itemsets (i.e. A | support(A) > s)

in a database D in an efficient manner. In a second step they also have to create

association rules from the mined itemsets. Some algorithms which tackle this task

are described in the following.

2.4.2 Frequent Itemset Mining Algorithms

The earliest algorithm to solve the itemset mining task was the APriori algorithm [Agrawal

et al., 1993]. Many improved algorithms have been proposed since, among them most

notably FP-Growth [Han et al., 2000] and ECLAT [Zaki, 2000].

The key insight to be able to perform an efficient frequent itemset search is summa-

rized in the monotonicity property, or equivalently, the downward closure property:

Lemma 2.4.1 (Downward closure of support). Given a transaction database D, let

A, B be two itemsets. Then, A ⊆ B → support(B) ≤ support(A).

Proof. This follows immediately from

cover(B) ⊆ cover(A)

In other words all l-subsets of frequent (l + 1)-sets must also be frequent.

The APriori algorithm takes advantage of this property and allows us to find frequent

itemsets very quickly.

APriori

The APriori algorithm is shown in Algorithm 1. The algorithm performs a breadth-

first search through the search space of all itemsets by iteratively generating can-

didate itemsets Cl+1 of size l + 1. It alternates between two phases: a database

2.4. Frequent Itemset Mining 20

pass phase, where the support of the itemsets in Cl is calculated and checked if it

surpasses the frequency threshold s, and the phase of candidate formation for l + 1

itemsets. The main disadvantage of the APriori algorithm is that it requires multi-

Algorithm 1: APriori

1: l← 1, L← ∅
2: Cl ← {{A} | A item of size 1, A ∈ D}
3: while Cl 6= ∅ do

4: Ll ← ∅
5: database pass:

6: for A ∈ Cl do

7: if A is frequent then

8: Ll ← Ll ∪ A

9: end if

10: end for

11: candidate formation:

12: Cl+1 ← sets of size l + 1 whose all subsets are frequent

13: Cl ← Cl+1

14: L← L ∪ Ll

15: end while

16: return L

ple passes over the database required for the support counting procedure, thus most

research towards improving performance has focused on that aspect.

The computational complexity of the algorithm can be divided by the two phases,

the database pass phase and the candidate generation. As derived in [Hand et al.,

2001] the worst-case complexity for each iteration of the database pass phase is

approximately square in Ll, where Ll is the number of frequent l-itemsets used to

generate the l + 1 stes from. In practice, however this part of the algorithm usually

runs linear in Ll.

Checking a frequent set Cl for frequency (line 7 in Algorithm 1) requires testing its

presence in all transactions of the database D, in each iteration the complexity is

thus O(|Cl|np), where Cl is the number of candidate l-itemsets, n is the number of

transactions and p is the number of items.

The number of iterations of the algorithm depends on the data, with k iterations

where k is the number of items in the largest frequent set.

An improved version of APriori was already proposed in [Agrawal et al., 1993]. The

so-called AprioriTid algorithm reduces the time needed for the support counting

procedure by replacing every transaction in the database by the set of candidate

itemsets that occur in that transaction. This is done repeatedly at every iteration l.

2.4. Frequent Itemset Mining 21

A detailed theoretical analysis of the complexity of mining frequent patterns has

recently been carried out in [Yang, 2006].

FP-Growth

Unlike APriori, some algorithms such as ECLAT and FP-Growth apply a depth-first

search. As an example, we describe FP-Growth (Frequent Pattern Growth) [Han et

al., 2000] in this section.

FP-Growth builds on two additional observations besides Lemma 2.4.1:

• Consider the cover(A) of an itemset A (i.e. the simple fact that an itemset A

is a subset of each transaction containing A). Thus, one can select transac-

tions containing A to form a conditional database (CDB), and find patterns

containing A from that conditional database {a, b}, {a, c}, {a} → {a, b, c}.
• To prevent the same pattern from being found in multiple CDBs, all itemsets

should be sorted by the same manner (e.g., by descending support)

The first observation allows for a divide-and-conquer approach: the conditional

databases are smaller sub-problems to be solved. To that end, FP-growth uses a

tree structure to store the database in a compressed form. The first step that the

algorithm performs is to remove infrequent items and to sort the transactions based

on the remaining items. FP-Growth then compresses these cleaned transactions

into a prefix tree (the FP-tree), the root of which is the most frequent item (i.e.

the FP tree is very similar to the prefix trees used in Huffman coding). Each path

on the tree represents a set of transactions that share the same prefix; each node

corresponds to one item. Each level of the tree corresponds to one item, and an item

list is formed to link all transactions that possess that item. Storing transactions in

the FP-tree in support descending order helps keeping the database small, since in

general the more frequently occurring items are arranged closer to the root of the

FP-tree and thus are more likely to be shared.

FP-Growth then starts to mine the FP-tree for each item whose support is larger

than s by recursively building its conditional FP-tree. With this, the problem of

finding frequent itemsets is converted to searching and constructing trees recursively.

The algorithm is outlined in Algorithm 2. It starts with initializing the data struc-

tures and then recursively the function Growth shown in Algorithm 3, which builds

and searches the conditional trees. Further details and examples can be found

in [Han et al., 2000].

2.4. Frequent Itemset Mining 22

Algorithm 2: FP-Growth

Data: Database D,minimal support s

Result: Frequent itemsets

Define and clear F-List : F [];1

foreach Transaction Ti ∈ D do2

foreach Item aj ∈ Ti do3

F [aj] + +;4

end5

end6

Sort F [];7

Define and clear the root of FP-tree : r;8

foreach Transaction Ti ∈ D do9

Make Ti ordered according to F [];10

ConstructTree (Ti, r);11

end12

foreach Item ai ∈ I do13

Call Growth (r, ai, s);14

end15

2.4.3 Interestingness Measures for Itemsets and Rules

Above we used the measures support and confidence to judge the quality or interest-

ingness of frequent itemsets and association rules. However, the mining literature

proposes several alternative measures, which might be more appropriate or serve

simply as additional “filters”, depending on the application. They include:

1. All-confidence [Omiecinski, 2003]

2. Collective strength [Aggarwal and Yu, 1998]

3. Conviction [Brin et al., 1997]

4. Leverage [Piatetsky-Shapiro, 1991]

5. Lift [Brin et al., 1997]

6. Normalized χ2 [Silverstein et al., 1998]

7. Difference of support/confidence quotient to 1 [Borgelt, 2003]

All these measures and many more are compared e.g . in [Tan et al., 2002]. An-

other particularly interesting work is [Silverstein et al., 1998] since it explores the

commonalities as well as differences between correlations and associations (roughly

2.4. Frequent Itemset Mining 23

Procedure Growth
Data: r, a, s

if r contains a single path Z then1

foreach combination γ of the nodes in Z do2

Generate pattern β = γ ∪ a with support = minimum support of nodes in γ3

if support(β) > s then

Output (β)4

end5

end6

end7

else8

foreach bi in r do9

Generate pattern β = bi ∪ a with support = support(bi) if support(β) > s10

then

Output (β)11

end12

Construct conditional DB for β;13

Construct conditional FP-tree for β: Treeβ;14

if Treeβ 6= then15

Growth (Treeβ, β, s)16

end17

end18

end19

spoken, associations are positive correlations). The interested reader is referred to

the respective publications for further detail.

In the work at hand, besides support and confidence, we also make use of the last

measure in the list above, the difference of the support quotient to 1. The reasoning

for this measure is as follows: when mining itemsets, we are especially interested

in sets whose items show strong dependence, or, conversely weak independence. A

measure for independence can be defined as follows. Assuming perfect independence,

the expected value for the support of an itemset is computed from the product of

the supports of the individual items. The ratio of actual and expected support of

an itemset is computed and its difference to 1 serves as an interestingness measure

(i.e. the difference to perfect independence):

dep(A) = 1−
∏l

i=1 support(A[i])

support(A)
(2.1)

where A is an itemset of length l and A[i] is the i-th item of the itemset A. Only

itemsets for which this difference is above a given threshold are then retained as

interesting.

2.5. Graph Mining 24

Itemset mining is one of the key techniques used in this thesis, and is applied

throughout Chapter 3 and in some parts of Chapter 4.

2.5 Graph Mining

Graph mining belongs to the field of structured data mining, which, besides graphs,

includes mining XML data, relational databases etc. Graph mining has a wide

range of applications, many of them in chemical compound analysis. A large body

of research has thus been published about graph mining, a good review can be

found in [Washio and Motoda, 2003]. The authors categorize the approaches to

graph-based data mining into five groups:

• greedy search based approaches

• inductive logic programming based approaches

• inductive database based approaches

• mathematical graph theory based approaches

• kernel function based approaches

In the work at hand we focus on mathematical graph theory based approaches,

since they are conceptually close to itemset mining. For a description of the other

approaches the interested reader is referred to [Washio and Motoda, 2003]. The

approaches in this class have in common, that they borrow essentially the same ter-

minology and the same search concepts from frequent itemset mining. The key mea-

sure is the (minimal) support for frequent subgraphs (where frequent subgraphs are

again those, which have a support higher than a threshold s), and mining is based on

candidate generation motivated by the downward closure property (Lemma 2.4.1):

the subgraphs of any frequent subgraph must be frequent, too.

Algorithms from this class include e.g . AGM (Apriori-based Graph Mining) [Inokuchi

et al., 2003], FSG (Frequent SubGraph Discovery) [Kuramochi and Karypis, 2001],

gSpan (graph-based Substructure pattern mining) [Yan and Han, 2002], CloseG-

raph [Yan and Han, 2003], and MoSS/MoFa [Borgelt and Berthold, 2002].

AGM

Just like the APriori algorithm (Section 2.4.2) for frequent itemset mining, AGM [Inokuchi

et al., 2003] starts from frequent one-vertex graphs and generates candidate graphs

2.5. Graph Mining 25

of larger sizes by pairwise joining of frequent subgraphs that satisfy the following

two conditions:

First, the frequent sub-graphs G(Xk) and G(Yk) to be joined must consist of k

vertices with identical elements except for those in the k-th row and k-th columns

of their adjacency matrices Xk and Yk, respectively:

Xk =

(
Xk−1 x1

xT
2 0

)
, Yk =

(
Xk−1 y1

yT
2 0

)
.

Then the graphs are joined to form a new graph G(Zk+1) having the adjacency

matrix

Zk+1 =




Xk−1 x1 y1

xT
2 0 zk,k+1

yT
2 zk+1,k 0


 ,

where zk,k+1 and zk+1,k represent an edge label between the k-th vertices of Xk and

Yk.

Second, in order to avoid redundancy (the same graph can be produced by switching

Xk and Yk), the two graphs may only be joined if

code(the first matrix) ≤ code(the second matrix)

where code(g) stands for an invariant representation of a graph g – examples of

invariant representations can be found in [Washio and Motoda, 2003].

Note that AGM executes a complete search and thus finds all frequent subgraphs.

AGM is also capable of handling labeled vertices and edges. However, labeled edges

require a conversion of the graph by inserting a special node in place of each edge

label. For a dense graph, this conversion results in a graph much larger than the

original one.

FSG

FSG [Kuramochi and Karypis, 2001; 2004] is similar to the AGM algorithm. How-

ever, FSG achieves higher efficiency by using graph vertex invariants (e.g . degree

of the vertices and the labels of the vertices and edges) and keeps transaction ids

(TIDs). (The latter is in fact similar to the AprioriTID algorithm for itemset min-

ing). Using TIDs, FSG keeps for every frequent subgraph a list of the transaction

identifiers that support it. This allows pruning generated candidate subgraphs be-

fore calculating costly subgraph-graph isomorphism: if the intersection of the TID

lists of G(Xk) and G(Yk) is shorter than the minimal support minsupp the new

candidate graph created by joining G(Xk) and G(Yk) couldn’t be frequent and can

2.5. Graph Mining 26

thus be pruned from the list of candidate graphs to be checked for frequency. Oth-

erwise its frequency is computed by using a subgraph isomorphism algorithm on the

limited search space determined by the intersection of the TID-lists.

Like AGM, FSG performs a complete search and thus finds all frequent subgraphs,

but unlike AGM FSG is capable of handling labeled vertices and edges without a

modification of the graph.

gSpan

gSpan [Yan and Han, 2002] is based on a depth-first search (DFS) and canonical

labeling. The main difference to AGM and FSG is, that gSpan uses a tree represen-

tation instead of an adjacency matrix to generate an invariant code for the graphs.

The frequent subgraphs are searched beginning with the frequent one-edge graphs

and expanding them by one vertex at each step. gSpan relies on a special coding

technique (so-called DFS codes) to encode and search the graphs. By applying this

DFS coding and DFS search, gSpan can derive complete sets of frequent subgraphs

over a given minimal supports in a very efficient manner in both computational time

and memory consumption.

CloseGraph

CloseGraph [Yan and Han, 2003] is a modification of gSpan, which only finds closed

frequent subgraphs. Just as in frequent itemset mining, a frequent subgraph S is

called closed, if there exist no super-graphs of S with the same support. CloseGraph

uses certain conditions, for a subgraph S, which — when satisfied — imply that all

descendants of S are not closed and thus do not have to be considered for further

expansions. As a result, the search branches of these subgraphs can be pruned

completely.

Thanks to the pruning of the search branches for closed subgraphs CloseGraph

outperforms gSpan in speed.

MoSS/MoFa

In contrast to the algorithms described previously, MoSS/MoFa [Borgelt and Berthold,

2002] uses a depth-first search. MoSS/MoFa starts at a graph consisting of a fre-

quent vertex, and extends this graph iteratively by adding an edge and a vertex.

The search tree is pruned using three criteria:

1. Support Based Pruning: A subtree of the search tree can be pruned, if the

subgraphs belonging to this subtree have not enough support.

2.6. Boosting 27

2. Size Based Pruning: The search tree is pruned, if a user-defined threshold for

the size of the frequent subgraphs has been reached.

3. Structural Pruning: Structural pruning ensures, that every subgraph is con-

sidered only once. Structural pruning is obtained by specifying rules, on how

to expand the subgraphs. These rules define an order, in which vertices and

their edges can be added as well as a criterion that defines when a vertex and

an edge can be added and when not.

In this work, graph mining is applied in Section 3.5, where we mine frequent sub-

graphs as part of an object-class recognition algorithm.

2.6 Boosting

Boosting is a technique to combine a set of weak classifiers into a strong classifier.

Weak classifiers are classifiers that may be only slightly better than chance, a strong

classifier should show much stronger correlation with the true classification. Thus,

boosting is a meta-algorithm for supervised learning, where no specific requirements

are posed on the functionality of the algorithm, except that it must behave accord-

ing to the probably approximate correct learning framework (PAC) [Valiant, 1984].

There are a variety of boosting algorithms available, one of the most popular is

still the early Adaboost [Freund and Schapire, 1997], which we will describe in the

following.

2.6.1 Discrete Adaboost

Discrete Adaboost (or Adaboost for short – the term discrete is used to distinguish it

from recent Adaboost variants that use real-valued classifier outputs) was introduced

in [Freund and Schapire, 1997]. Boosting combines several weak classifiers ht(x) into

a strong classifier H(x). The weak classifiers are only required to be slightly better

than chance.

Assuming the classifiers have binary {−1, +1} output (discrete), the Adaboost

strong classifier has the form

H(x) = sign(
T∑

t=1

αtht(x)) (2.2)

where T is the number of weak classifiers being used (iterations), and αt are coeffi-

cients chosen by Adaboost.

2.6. Boosting 28

During training Adaboost assigns a weight wt
i to each training sample i for boosting

round t (with
∑

wt
i = 1) and calls the weak learning algorithm to find the best weak

classifier under the given weights. Then αt and the new weights wt+1
i are calculated.

This process is repeated until T boosting rounds are completed. Since none of the

calculations depend on T , any other stopping criterion (like a target error rate) can

be used. The learning algorithm can be summarized as follows:

• Given: labeled training samples (x1, y1), . . . , (xn, yn) with yi ∈ {−1, +1}
• Initialize weights w1

i = 1
N

for i = 1 . . . N

• For t = 1 . . . T

1. Use the weak learning algorithm to find the classifier ht(x) ∈ {−1, +1}
that minimizes the error εt =

∑
i:ht(xi)6=yi

wt
i

2. Calculate: αt = 1
2
ln(1−εt

εt
)

3. Update weights: wt+1
i = wt

ie
(−yiαtht(xi))

4. Normalize weights such that
∑

i w
t+1
i = 1

• The strong classifier is H(x) = sign(
∑T

t=1 αtht(x))

In other words, AdaBoost maintains a distribution of weights for the training ex-

amples. This distribution is updated in each round - the weights of misclassified

examples are increased and the weights of well-classified examples are decreased -

thus, the weak learner is forced to concentrate on the difficult examples.

2.6.2 Classifier Cascades with Boosting

One of the most successful applications of boosting was for the task of real-time

face detection in [Viola and Jones, 2001b]. The method is summarized in detail in

Chapter 5.4. One of the main ideas of the method is to learn a cascade of classifiers

which allows especially fast (real-time) recognition with the learned classifier. The

idea is to reject “easy” negative matches early with little effort and then only to

focus on the remaining data with more complex classifiers. For instance in [Viola

and Jones, 2001b] the first classifier in the cascade - called the attentional operator

- uses only two features to achieve a false negative rate of approximately 0% and a

false positive rate of 40%. The effect of this single classifier is to reduce by roughly

half the number of times the entire cascade is evaluated.

For learning, this means, that classifiers have to be arranged in a cascade in order of

complexity, where each successive classifier is trained only on those examples which

pass through the preceding classifiers. The false positives F and the detection rate

2.6. Boosting 29

D of the entire cascade are the products of the false positives fi and detection rate

di of the individual stages:

F =
N∏

i=1

fi (2.3)

D =
N∏

i=1

di (2.4)

To reach a pre-defined training goal of the whole cascade (chosen by the user), a

training goal for each stage can be calculated, assuming that all stages will have

about equal performance. This typically leads to a target detection rate of 0.99 and

a false positive rate of 0.30 for each stage, depending on the number of stages.

Adaboost will only try to minimize the misclassification error. However by adding

a constant value to the sum in equation (2.2) it is possible to increase the hit rate

at the expense of the false positives. Viola and Jones have proposed the following

method to train a stage:

1. Let Adaboost choose and add the next weak classifier.

2. Tune the threshold of the current strong classifier such that the desired detec-

tion rate is reached on the validation set.

3. If the tuned classifier does not reach the target false positive rate on the

validation set, go back to 1.

In other words, features are added until the training goal is reached. The stage goal

is the stopping criterion for Adaboost training.

2.6.3 Adaboost Variants

Since the original Adaboost publication [Freund and Schapire, 1997], many improved

boosting algorithms have been proposed, for instance for real valued weak classifiers

(Real Adaboost), etc. One extension worth mentioning is asymmetric boosting.

The original Discrete Adaboost algorithm tries to minimize the number of miss-

classifications (this is called the symmetric error). However when using boosting

in combination with a classifier cascade, a false positive (e.g . background classified

as face) can still be rejected by the later stages, while a false negative (e.g . face

classified as background) at any stage is a final decision that degrades the overall

performance (equation 2.4). In other words, the cost of the classification error is not

symmetric.

2.6. Boosting 30

Motivated by the scenario of face detection, [Viola and Jones, 2001a] proposed the

following solution. The authors introduced an approach to modify the weights of the

training samples before each boosting round to force more attention to the positive

samples. This both simplified and improved accuracy of their classifier. (Note that

in that particular work Real Adaboost was used instead of Discrete Adaboost.)

We apply boosting in combination with graph mining for object class detection in

Chapter 3.5 and for text detection in images of natural scenes in Chapter 5.4.

3
Frequent Itemset Mining in Visual

Data

3.1 Introduction

Detection of patterns in data is probably the most important task in computer

vision. It first appears at the lowest stages of a recognition pipeline (e.g . feature

extraction), and typically reappears at every higher stage of the system. Especially

at those higher stages, detection of repeating patterns allows us to gain valuable

insights from the data. For instance, given a set of images with cars, the frequent

occurrence of a certain set of local features in those images leads to the conclusion

that their presence might be valuable evidence for the presence of a car in any other

image.

While dealing with finding repeating patterns in data, we can discriminate two

closely related tasks: data mining and learning. The discrimination of those tasks

is not entirely clear in the literature, however, generally spoken in a learning envi-

ronment usually a set of labeled training data to reach a certain goal is given (e.g .

learn a model for a car), while a mining algorithm simply digs through a pile of data

without a previously defined goal on what to look for (e.g . find the most important

objects in a video sequence). Further, (machine) learning is mostly concerned with

predictive models and an emphasis on performance of trained models, while data

mining puts emphasis on descriptive models and patterns for existing data, and on

handling large datasets.

Especially the last point, handling large dataset, was the main motivation to borrow

techniques from data mining and apply them to visual data. As outlined in the

introduction, the abundance of visual data available due to the rise of digital imaging

devices and on-line sharing of data poses both novel opportunities and challenges

for computer vision research. To handle large amounts of data, efficient algorithms

are required. Specifically, we build on itemset mining algorithms as introduced

3.1. Introduction 32

in Chapter 2.4. This choice is motivated by two factors: first, a bag of visual

words (quantized local appearance features) can be described very naturally as a

set. Second, itemset mining has been used successfully in a variety of domains to

detect repeating combinations of items efficiently.

In this chapter, we use these algorithms first for mining tasks (find repeating patterns

in existing data), but then also try to use their output for learning, i.e. as predictor

for unseen data. The chapter is structured as follows: in Section 3.2 we look at a

true mining task, the detection of frequently occurring objects in video data, and try

to apply itemset mining to solve it. In Section 3.3 we extend the approach to tackle

detection of configurations of local features as evidence for the presence of object

classes. The usefulness of this evidence for object class recognition is investigated in

Section 3.4 in the context of the ISM framework of [Leibe and Schiele, 2003]. Finally,

Section 3.5 explores an alternative family of mining techniques namely graph mining

for the same tasks.

3.2. Mining Specific Objects in Video 33

3.2 Mining Specific Objects in Video

The goal of the method to be described in this section is to mine interesting objects

and scenes from video data. In other words, to detect frequently occurring objects

automatically. Mining such representative objects, actors, and scenes in video data

is useful for many applications. For instance, they can serve as entry points for

retrieval and browsing, or they can provide a basis for video summarization. Our

approach to video data mining is based on the detection of recurring spatial arrange-

ments of local features. The input to the mining algorithm consists of subsets of

feature-codebook entries for each video frame, encoded into “transactions”, as they

are known in the data mining literature [Agrawal et al., 1993]. We also incorporate

information on spatial arrangement of features in transactions and on how to select

the neighborhood defining the subset of image features included in a transaction.

For scenes with significant motion, we define this neighborhood via motion segmen-

tation. To this end, we also introduce a simple and very fast technique for motion

segmentation on feature codebooks.

The remainder of this section is organized as follows. First the pre-processing steps

(i.e. video shot detection, local feature extraction and clustering into appearance

codebooks) are described. We then introduce the concepts of our mining method

and show experiments on data from music video clips.

3.2.1 Shot Detection, Features and Visual Words

The main processing stages of our system rely on the prior subdivision of the video

into shots. We apply the shot partitioning algorithm [Osian and Van Gool, 2004],

and pick four “keyframes” per second within each shot. As in [Sivic and Zisser-

man, 2004], this results in a denser and more uniform sampling than when using the

keyframes selected by [Osian and Van Gool, 2004]. In each keyframe we extract two

types of affine covariant features (regions): Hessian-Affine [Mikolajczyk and Schmid,

2004b] and MSER [Matas et al., 2002]. Affine covariant features are preferred over

simpler scale-invariant ones, as they provide robustness against viewpoint changes.

Each normalized region is described with a SIFT-descriptor [Lowe, 2004]. Next, a vi-

sual vocabulary is constructed by clustering the SIFT descriptors with an optimized

hierarchical-agglomerative technique described in [Leibe and Schiele, 2003]. In a

typical video, this resulted in about 8000 appearance clusters for each feature type.

(Remember, that the number of clusters is determined automatically in agglomer-

ative clustering, unlike in k-Means. The parameter that has to be set is a cut-off

value for the distances used while merging clusters. Those were chosen according to

the experiments shown in [Leibe and Schiele, 2003]).

3.2. Mining Specific Objects in Video 34

We apply the ‘stop-list’ method known from text-retrieval and [Sivic and Zisserman,

2004] as a final polishing: very frequent and very rare visual words are removed

from the codebook (the 5% most and 5% least frequent). Note that the follow-

ing processing stages use only the spatial location of features and their assigned

appearance-codebook id’s. The appearance descriptors are no longer needed.

3.2.2 Video Mining Approach

Our goal is to find frequent spatial configurations of visual words in video scenes.

For the time being, let us consider a configuration to be just an unordered set of

visual words. For a codebook of size d there are 2d possible subsets of visual words.

For each of our two feature types we have a codebook with about 8000 words, which

means d is typically > 10000, resulting in an immense search space. Hence we need a

mining method capable of dealing with such a large dataset and to return frequently

occurring word combinations.

Frequent itemset mining methods are a good choice, as they have solved analogous

problems for other kinds of data, as discussed in Chapter 2.4.

Incorporating Spatial Information

In our context, the items correspond to visual words. In the simplest case, a trans-

action could be created for a frame, or around each feature, and would consist of

an orderless bag of all other words within some neighborhood in the image. In

order to include also spatial information (i.e. spatial locations of visual words) in

the mining process, we further adapt the concept of an item to our problem. The

key idea is to encode spatial information directly in the items. In each image we

create transactions from the neighborhood around a limited subset of selected words

{vc}. These words must appear in at least fmin and at most in fmax frames (where

fmin and fmax are parameters. This is motivated by the notion that neighborhoods

containing a very infrequent word would create infrequent itemsets, neighborhoods

around an extremely frequent word have a high probability of being part of clutter.

Each vc must also have a matching word in the previous frame, if both frames are

from the same shot. Typically, with these restrictions, about 1/4 of the regions in a

frame are selected.

For each vc we create a transaction which contains the surrounding k nearest words

together with their rough spatial arrangement. The neighborhood around vc is di-

vided into B sections. In all experiments we use B = 4 sections. Each section covers

90 ◦ plus an overlap o = 5 ◦ with its neighboring sections, to be robust against small

rotations. We label the sections {tl, tr, bl, br} (for ”top-left”, ”top-right”, etc.), and

3.2. Mining Specific Objects in Video 35

Figure 3.1: Creating transaction from a neighborhood. The area around a central

visual word vc is divided into sections. Each section is labeled (tl, tr, bl, br) and the

label is appended to the visual word ids.

append to each visual word the label of the section it lies in. In the example in Fig-

ure 3.1, the transaction created for vc is T = {tl55, tl9, tr923, br79, br23, bl23, bl9}.
In the following, we refer to the selected words {vc} as central words. Although

the approach only accommodates for small rotations, in most videos objects rarely

appear in substantially different orientations. Rotations of the neighborhood stem-

ming from perspective transformations are safely accommodated by the overlap o.

Although augmenting the items in this fashion increases their total number by a

factor B, no changes to the frequent itemset mining algorithm itself are necessary.

Besides, thanks to the careful selection of the central visual words vc, we reduce the

number of transactions and thus the runtime of the algorithm.

Exploiting Motion

Shots containing significant motion1 allow us to further increase the degree of speci-

ficity of transactions: if we had a rough segmentation of the scene into object can-

didates, we could restrict the neighborhood for a transaction to the segmented area

for each candidate, hence dramatically simplifying the task of the mining algorithm.

In this case, as the central visual words vc we pick the two closest regions to the

center of the segmented image area. All other visual words inside the segmented

area are included in the transaction (Figure 3.3).

We propose a simple and very fast motion segmentation algorithm to find such

object candidates. The assumption is that interesting objects move independently

from each other within a shot. More precisely, we can identify groups of visual words

which translate consistently from frame to frame. The grouping method consists of

two steps:

1Since shot partitioning [Osian and Van Gool, 2004] returns a single keyframe for static shots
and several keyframes for moving shots, we can easily detect shots with significant motion.

3.2. Mining Specific Objects in Video 36

Step 1. Matching words. A pair of words from two frames f(t), f(t + n) at

times t and t+n is deemed matched if they have the same visual word ids (i.e. they

are in the same appearance cluster), and if the translation is below a maximum

translation threshold tmax. This matching step is extremely fast, since we rely only

on cluster id correspondences. In our experiments we typically use tmax = 40 pixels

and n = 6 since operating at four keyframes per second.

Step 2. Translation clustering. At each timestep t, the pairs of regions matched

between frames f(t) and f(t + n) are grouped according to their translation using

k-means clustering. In order to determine the initial number of motion groups k,

k-means is initialized with a leader initialization [Webb, 2002], on the translation

between the first two frames. For each remaining timestep, we run k-means three

times with different values for k, specifically

k(t) ∈ {k(t− 1)− 1, k(t− 1), k(t− 1) + 1} (3.1)

where k(t − 1) is the number of motion groups in the previous timestep. This

prevents the number of motion groups from changing abruptly from frame to frame.

Furthermore, k(t) is constrained to be in [2...6]. To further improve stability, we

run the algorithm twice for each k with different random initializations. From

the resulting different clusterings, we keep the one with the best mean silhouette

value [Kaufman and Rousseeuw, 1990]. We improve the quality of the motion groups

with the following filter. For each motion group, we estimate a series of bounding-

boxes, containing from 80% progressively up to all regions closest to the spatial

median of the group. We retain as bounding-box for the group the one with the

maximal density number of regions
bounding box area

. This procedure removes from the motion groups

regions located far from most of the others. These are most often mismatches which

accidentally translate similar to the group.

The closest two visual words to the bounding box center are now selected as the

central visual word vc for the motion group. Figure 3.2 shows detected motion

groups for a scene of a music videoclip.

3.2.3 Mining an Entire Video

We quickly summarize the processing stages from the previous sections. A video is

first partitioned into shots. For rather static shots we create transactions from a

fixed neighborhood around each central word. For shots with considerable motion,

we use as central words the two words closest to the spatial center of the motion

group, and create two transactions covering only visual words within it. For frequent

itemset mining itself we use an implementation of APriori from [Borgelt, 2003]. We

mine Maximal Frequent Itemsets and only sets with four or more items are kept.

3.2. Mining Specific Objects in Video 37

Figure 3.2: First row: motion groups (only region centers shown) with bound-

ing boxes. Second row: motion groups in translation space. Note: colors do not

necessarily correspond along a row, since groups are not tracked along time.

Note how frequent itemset mining returns sparse but discriminative descriptions

of neighborhoods. As opposed to the dot-product of binary indicator vectors used

in [Sivic and Zisserman, 2004], the frequent itemsets show which visual words cooc-

cur in the mined transactions. Such a sparse description might also be helpful for

efficiently indexing mined objects.

Choosing a Support Threshold

The choice of a good minimal support threshold s in frequent itemset mining is not

easy, especially in our untraditional setting where items and itemsets are constructed

without supervision. If the threshold is too high, no frequent itemsets are mined. If

it is too low, too many (possibly millions) are mined. Thus, rather than defining a

fixed threshold, we run the algorithm with several thresholds, until the number of

frequent itemsets falls within a reasonable range (usually set to more than 100 and

less than 100′000 sets). We achieve this with a binary split search strategy. Two

extremal support thresholds are defined, slow and shigh. The number of itemsets is

desired to be between nmin and nmax. Let n be the number of itemsets mined in

the current step of the search, and s be the corresponding support threshold. If the

number of itemsets is not in the desired range, we update s by the following rule

and rerun the miner:

s(t+1) =

{
s(t) +

(shigh−s(t))

2
, slow = s(t) if n > nmax

s(t) − (s(t)−slow)
2

, shigh = s(t) if n < nmin

Since the mining algorithm is very fast, we can afford to run it several times (run-

times reported in the result section).

3.2. Mining Specific Objects in Video 38

Figure 3.3: Creating transactions: (a) static shots: transactions are formed around

each vc from the k-neighborhood. (b) shots with considerable motion: a motion

group is the basis for a transaction, thus the number of items in a transaction is

not fixed but given by the size of the motion group. With (b) in general fewer

transactions are generated.

Finding Interesting Itemsets

The output of the APriori algorithm is usually a rather large set of frequent itemsets,

depending on the minimal support threshold. Finding interesting item sets (and

association rules) is a much discussed topic in the data mining literature, as outlined

in Section 2.4, where we discussed several approaches, which define interestingness

with purely statistical measures. For instance, itemsets whose items statistically

dependent are interesting. We thus applied the measure defined from equation 2.1,

which had in general a positive effect on the quality of our mining results.

Another strategy is to rely on domain-specific knowledge. In our domain, itemsets

which describe a spatial configuration stretching across multiple sections tl, tr, bl, br

are interesting. These itemsets are less likely to appear by coincidence and also

make the most of our spatial encoding scheme, in that these configurations respect

stronger spatial constraints. The number of sections that an itemset has to cover

in order to be selected depends on a threshold nsec ∈ {1 . . . 4}. Selecting interesting

itemsets with this criteria is easily implemented and reduces the number of itemsets

drastically (a typical value is nsec = 2, we observed reduction of sets by a factor of

about 10 to 100).

Itemset Clustering

Since the frequent itemset mining typically returns spatially and temporally overlap-

ping itemsets, we merge them with a final clustering stage. Pairs of itemsets which

jointly appear in more than F frames and share more than R regions are merged.

Merging starts from the pair with the highest sum R+F . If any of the two itemsets

3.2. Mining Specific Objects in Video 39

in a pair is already part of a cluster, the other itemset is also added to that cluster.

Otherwise, a new cluster is created.

3.2.4 Experiments and Results

We present results on two music videos from Kylie Minogue [Minogue and Gondry,

2002; Minogue and Shadforth, 2001]. In particular the clip “Come into my world”
[Minogue and Gondry, 2002] makes an interesting test case for mining, because the

singer passes by the same locations four times, and she even appears replicated

several times in later parts of the clip. (Figure 3.4, bottom row). Hence, we can test

whether the miner picks up the reappearing objects. Furthermore, the scene gets

more and more crowded with time, hence allowing to test the system’s robustness

to clutter.

A few of the objects mined from the 1500 keyframes long clip “Come into my

world” [Minogue and Gondry, 2002] are shown in Figures 3.4 through 3.6. The

full miner was used, including motion grouping and itemset filtering with nsec = 2.

The Figures show the most dominant objects that were mined. In Figure 3.4 one

of the main locations of the clip is identified as important. The four rows show

keyframes from each of the singer’s walks through the location. Note how the

“multiplication” of the main character leads to strong occlusion effects, especially

in the fourth walkthrough shown on the last line. Also note the viewpoint changes.

All instances of the location are mined in spite of these challenges.

Figure 3.5 shows the main character of the clip mined due to the pattern on her

clothes. The character is mined in all locations (including the one from Figure 3.4)

and in varying poses. However, some of the replicated instances of the singer are

missed by our algorithm (3rd and 4th rows).

Figure 3.6 shows a third mined object, this time again representing one location of

the video. The four rows of the Figure show again frames from each pass through the

location. However, here only two frames from the last walk through the scene could

be mined (the missing frames are represented by the placeholders in the fourth row).

This is probably due to the increasing background occlusion throughout the video,

which can be observed in the second column of the figure. Such missing frames could

be recovered by adding an object-level tracking, connecting gaps between keyframes.

Figure 3.8 shows typical results for mining with a fixed 40-neighborhood, i.e. with-

out motion segmentation, akin to what has been proposed by [Sivic and Zisserman,

2004]. As can be seen in subfigures 3.8a and 3.8b, only smaller parts of the large

objects from Figures 3.4- 3.6 are mined. More examples of objects mined at the

40-neighborhood scale are shown in the other subfigures. Comparing these results

to those in Figure 3.4 highlights the benefits of defining the neighborhood for mining

based on motion segmentation. Thanks to it, objects can be mined at their actual

3.2. Mining Specific Objects in Video 40

Figure 3.4: Results for clip “Come into my World” using motion segmentation.

First mined cluster, a walk through the scene is shown on each line by representative

keyframes.

size (number of regions), which can vary widely from object to object, instead than

being confined to a fixed, predefined size. Additionally, the singer was not mined

when motion segmentation was turned off.

Figure 3.7 shows example objects mined from the clip [Minogue and Shadforth,

2001] with a 40-neighborhood. The results are less impressive than ones obtained

on the clip [Minogue and Gondry, 2002]. One reason is the very dynamic nature of

that particular clip, with many short shots and little translational motion, which

does not result in benefits when applying our simple motion segmentation stage.

Furthermore, our algorithm is naturally challenged by sparsely textured, non-rigid

objects. As an example one could mention the legs of the main character. There are

few features to begin with and the walking motion strongly changes the configuration

of those, thus not the whole body is detected as object.

In Table 3.1 we compare quantitatively mining with motion segmentation, and with

a fixed 40-neighborhood for the clip “Come into my world” [Minogue and Gondry,

2002]. Note that there are only 8056 transactions when using motion segmentation,

3.2. Mining Specific Objects in Video 41

Figure 3.5: Results for clip “Come into my World”. The second mined cluster

representing the main character of the clip. It is mined throughout the clip in

varying locations and poses

compared to more than half a million when using a fixed 40-neighborhood. While

the runtime is very short for both cases, the method is faster for the 40-neighborhood

case, because transactions are shorter and only shorter itemsets were frequent. Ad-

ditionally, in the 40-NN case, the support threshold to mine even a small set of only

285 frequent itemsets has to be set more than a factor 10 lower. The mean time

for performing motion segmentation matching + k-Means clustering) was typically

about 0.4s per frame, but obviously depends on the number of features detected per

frame. In conclusion, we showed that our mining approach based on frequent item-

sets is a suitable and efficient tool for video mining. Restricting the neighborhood

by motion grouping has proven to be useful for detecting objects of different sizes

at the same time.

3.2. Mining Specific Objects in Video 42

Figure 3.6: Results for clip “Come into my World”. Third mined cluster, a walk

through the scene on each line is shown. Only few frames of the last pass through

the location could be mined in this case (last line).

Figure 3.7: Results for clip “Can’t get you out of my head”.

3.2. Mining Specific Objects in Video 43

Figure 3.8: Examples for the clip Come into my World mined at a fixed 40 neigh-

borhood.

Method Regions #T t FIMI s # FI # FIF (ns) Cl (F ,R)

M.-Seg. 2.87 ∗ 106 8056 56.12s 0.015 27654 308 (2) 11 (2,2)

40-NN 2.87 ∗ 106 511626 18.79s 0.0001 285 285 (0) 55 (2,2)

Table 3.1: Motion Segmentation and 40-NN mining methods compared. Regions:

number of regions in entire video. #T: number of transactions. t FIMI: runtime of

frequent itemset mining. s: support threshold. #FI: number of frequent itemsets.

FIF: number of FI after filtering step with ns sections. Cl: number of clusters for

itemset clustering with parameters F ,R.

3.3. Mining Frequent Feature Configurations 44

3.3 Mining Frequent Feature Configurations

In the preceding section of this chapter we described an approach to mine frequently

occurring objects from video data using itemset mining on quantized local features.

The objects we were dealing with were specific objects, that is a specific person or

scene were the output of the mining algorithm. Local features are also at the heart

of the most successful approaches to object class detection and image classification
[Agarwal et al., 2004; Dalal and Triggs, 2005; Dance et al., 2004; Feltzenswalb and

Hutenlocher, 2005; Fergus et al., 2005; Leibe et al., 2005; Sivic and Zisserman, 2004;

Opelt et al., 2006]. After learning a class model from training images, these methods

are capable of detecting whether a novel object instance is present in a previously

unseen test image. Several recent methods go even a step further by localizing

novel objects up to a bounding-box [Agarwal et al., 2004; Dalal and Triggs, 2005]

or their segmentation and outlines [Shotton et al., 2006; Leibe et al., 2005]. These

methods are robust to clutter, scale changes, and missing object parts - properties

which stem from the advantageous characteristics of local features. However, these

advantages come at a price. The local feature extractor is run beforehand and

without prior knowledge of the object class. As a result, on a typical image it

returns a large number of features, of which only some fraction lie on the object

of interest. Especially when the object appears small in the image, the total set

of features has a low signal-to-noise ratio. This imposes a great burden on object

detectors and other higher-level processes, as they have to find their way to the

object through a sea of background features.

In this chapter we propose a mining-based method to filter this large mass of fea-

tures. It selects features which have high probability of lying on instances of the

object class of interest. Our technique is intended as an intermediate layer between

feature extraction and object class detection. The filtered set of features our method

delivers can then be fed into a higher-level object detector. Thanks to this, it starts

from a much higher signal-to-noise ratio, and its performance is likely to improve.

We expect our method to lead to lower false-positive rates, and possibly also higher

detection rates. Besides, starting from a cleaner set of features is likely to ease other

tasks as well, such as segmenting objects from the background, or determining their

pose. The method’s input is a set of positive training images, containing different

instances of the object class, and a set of negative background images. We organize

local features in semi-local neighborhoods and express these in a way suitable for

data mining. We adopt again Frequent Itemset Mining, which efficiently analyzes

the large set of all neighborhoods and returns spatial configurations of local features

frequently re-occurring over the training images. From these frequent spatial config-

urations we now also collect discriminative Association Rules. These rules infer the

presence of the object in positive images with high confidence and fire only rarely

on background images. Figure 3.9 shows two typical feature configurations and the

3.3. Mining Frequent Feature Configurations 45

->Motorbike

-> Background

Figure 3.9: Example of mined rules: on the left a frequent configuration which

infers background, on the right a configuration which infers the object motorbike.

corresponding rules produced by our miner. One rule infers the presence of the

motorbike, while the other corresponds to a feature configuration mined from the

background. When given a novel image, we first match the mined configurations to

it, and then we associate a confidence value to each feature expressing how likely

it is to lie on an instance of the object class. This is obtained by accumulating the

activation scores of all matched configurations involving the feature.

This approach has several advantages. First of all, the mining algorithm is designed

for scalability and allows to process large training sets rapidly. Moreover, the set

of rules collected from the data in this fashion are discriminative and easy to in-

terpret. Indeed, by considering spatial configurations of neighboring features we

gain higher discriminative power compared to individual features. A single local

feature, even from an informative configuration, might not be distinctive enough

and could occur frequently also on the background. In addition, the rules often

capture configurations of local features corresponding to semantic object parts,

such as motorbike wheels (Figure 3.11). The per-feature confidence values pro-

duced by our approach effectively prune away the majority of background fea-

tures, and therefore act as a valuable focus-of-attention mechanism for the bene-

fit of subsequent object detectors, e.g. [Agarwal et al., 2004; Fergus et al., 2005;

Leibe et al., 2005].

Also note, that unlike in the video mining work presented in the preceding section,

we have no motion cues, and thus can’t rely on a motion segmentation to identify

neighborhoods to create transactions from. Hence, we present an extended and

refined method for including spatial arrangement of features in the itemset mining

process, which also works for the kind of data we are confronted with now: unsorted

images containing instances of an object class, instead of an ordered sequence of

images showing a specific object.

3.3. Mining Frequent Feature Configurations 46

The remainder of this section is organized as follows. First we describe our approach

to mining frequent spatial configurations of local features from training images. In

subsection 3.3.2 we determine the confidence that features appearing in new images

cover an instance of the object class. Finally, an extensive experimental evaluation

is carried out, demonstrating our approach primes features lying on class instances

and discards background ones.

3.3.1 Frequent Feature Configurations

Our technique for mining frequent feature configurations can be summarized as

follows. The training set is composed of positive images, containing object instances

annotated by a bounding-box, and of negative images, which do not contain any

instance of the class of interest. First, a large number of spatial configurations

of local image features are collected from all training images. An efficient mining

algorithm is then used to select frequently occurring configurations from this large

set. The next step transforms these frequent spatial configurations into association

rules. These rules are built by selecting frequent spatial configurations which imply

the presence of the object class with high confidence, while at the same time are

discriminative against clutter (i.e. they occur rarely on the negative images or on

non-object areas of the positive images).

These discriminative rules are the building blocks for a generating class-specific

confidence values for features of novel images. These convey the probability that

each feature belongs to an instance of the object class (Section 3.3.2).

The itemset mining algorithm is the same as in the previous section about video

mining. However, now we also form association rules from the mined itemsets.

Association rules have several desirable properties. Thanks to the efficient frequent

itemset mining method they can be extracted even from very large bodies of data.

The rule notation is easily interpretable and can be used to gain global insights

into large datasets or can be analyzed by experts. These properties have led to

their application in several fields such as web usage mining [Cooley et al., 1993] or

document analysis [Holt and Chun, 1999].

The lowest layer of our system is again built on a set of local features extracted

in each image. We use a Difference of Gaussian (DoG) detector to extract regions

and the SIFT descriptor [Lowe, 2004] to describe their appearance. The SIFT

feature vectors are clustered into a visual vocabulary with hierarchical agglomerative

clustering, just like in the preceding section.

In order to cope with the inherent uncertainty of the unsupervised clustering process,
we soft-match each feature by assigning it to all codebook clusters whose center c is

3.3. Mining Frequent Feature Configurations 47

closer than a distance threshold dmin. This yields a description of each region Ri by
a set of codebook labels

ζi = {cj | d(Ri, cj) < dmin , j ∈ 1 . . . N} (3.2)

where N is the total number of appearance clusters.

Neighborhood-based Image Description

The second layer of our system builds an image representation from the codebook

labels. The simplest representation would be a global histogram, i.e. a bag of fea-

tures as discussed in Section 2.3. However, we aim at unsupervised mining and at

learning useful representations for object classes. In this setting, a more informative

description is necessary. Encoding not only the presence of visual words, but also

their spatial arrangement yields a much stronger descriptor. Thus, we describe each

image as a set of semi-local neighborhoods.

Several methods have been proposed to sample spatial neighborhoods from an image.

In [Dalal and Triggs, 2005] a sliding-window mechanism samples windows at fixed

location and scale steps, followed by a spatial tiling of the windows. The very

different approach [Sivic and Zisserman, 2004] defines a neighborhood around each

region Rc. This is represented as the unordered set of the k nearest regions, without

storing any spatial information (k-neighborhoods).

Our approach tries to combine the best of both. We rely on the sampling of the

feature extractor to define the locations Rc of the neighborhood centers. However,

instead of using a k-neighborhood we use the scale of the central region Rc to define

the size of the neighborhood. More precisely, all regions falling within a square of

side proportional to the scale of Rc are inside the neighborhood. Subsequently, each

neighborhood is split into Q tiles as shown in Figure 3.10a. For each tile we create

an activation vector indicating which visual words it contains2. The resulting Q

activation vectors are concatenated to form the neighborhood descriptor: a (N ∗Q)-

dimensional sparse binary vector. Figure 3.10b shows a neighborhood descriptor for

N = 10 and Q = 9. Note how in this example the top-left region is soft-matched

to appearance clusters 2 and 5. The activation vector can equivalently be written

as a list of non-zero indices – or, in itemset mining terminology, as a transaction

(figure 3.10c). Note how neighborhoods can be made rotation invariant by aligning

the tile grid with the dominant orientation of Rc. In otherwords, the neighborhood

description is a generalized version of the neighborhood with only 4 tiles used in the

previous section. Since we form a neighborhood for every region in every training

image, this results in a very large number of neighborhoods (or transactions). The

2We do not count multiple occurrences of the same visual word in a particular tile, i.e. we work
with sets instead of bags.

3.3. Mining Frequent Feature Configurations 48

Figure 3.10: (a) An example neighborhood with 9 tiles and 10 appearance clusters.

Circles represent local features, and numbers indicate the appearance cluster(s) they

are assigned to. (b) Activation vector. (c) Transaction.

training sets in section 4.6 have between 26′000 and 74′000 transactions. Note that

itemset mining can handle these amounts of data with ease – in a recent parallel

implementation of FP-Growth [Li et al., 2008a] datasets with 15′000′000 transactions

and 85′000′000 items were mined successfully.

Mining Frequent and Distinct Configurations

Equipped with the tools introduced in the previous sections, we can now find fre-

quent configurations of visual words efficiently. We are especially interested in min-

ing distinctive configurations, which appear frequently on the object and rarely on

the background.

As discussed above, each neighborhood is described by a list of non-zero indices,

and generates a transaction. The input to the mining algorithm is the database

containing all transactions. In order to discriminate against background data, we

add transactions from the negative training set to the database. All transactions

originating from instances of the object class are assigned the label “object” as an

additional item, while we append the item “background” to background transac-

tions. For example, the complete transaction for the neighborhood in figure 3.10 is

{2, 5, 62, 88, object} (assuming it lies on an object).

We run the APriori [Agrawal et al., 1993] algorithm on the transaction database in

order to mine frequent itemsets and association rules. We filter the resulting rules

to keep only those which infer the object label with high confidence, i.e.

conf (C → object) > confmin (3.3)

where the antecedent C is a frequent configuration and confmin is a confidence thresh-

old. Notice how a rule does not have a high confidence if it appears frequently on

both objects and background. This can be understood by inspecting Definition

(2.4.7), where confidence expresses the strength of the implication C → object (see

3.3. Mining Frequent Feature Configurations 49

section 2.4). Hence, our approach finds frequent and distinctive feature configu-

rations. Moreover, frequent itemset mining finds these prototypical configurations

very efficiently from the immense search space of all 2N∗Q possible configurations

(typically N ' 3000 and Q ' 16).

As additional advantage, many of the mined rules have semantic qualities, as shown

in Figure 3.11. The top left image shows activations of one particular rule on the

Caltech-4 set [Fergus et al., 2003] used to mine rules for motorbikes. Activations on

two novel test images are shown in the second and third row (see next section for how

to match the mined configurations to new images). The regions matching the an-

tecedent C of the rule are marked in yellow. The central region Rc defining the neigh-

borhood P is shown in white3. Notice the variability in the shape and appearance of

the motorbikes, and the different scales of the neighborhoods (automatically adapt-

ing to the image data). The rule in the figure is {32909, 34622, 46292} → motorbike

with s = 3% support and c = 100% confidence. This rule is one of the most discrim-

inant found for motorbike. This makes sense, as wheels are its most characteristic

parts. Similar observations can be made for the giraffes in the right column.

3.3.2 Class-specific Feature Confidence

The frequent feature configurations C mined from the neighborhoods in the training

images represent frequent and discriminant fragments of an object class. They

describe neighborhoods characteristic for the object class.

Given a new test image, we can now match the mined configurations to it, and
hence discover features lying on instances of the object class. To achieve this, we
start by generating all neighborhoods P of the new image (one for each region,
as described in section 3.3.1). Every mined configuration C is now matched to
each image neighborhood P as follows. A configuration can be written as a sparse
activation vector. Hence, the test image neighborhoods can be matched efficiently
by a sparse dot-product:

m(C,P) =
{

1 if C ∗ P = |C|
0 if C ∗ P 6= |C| (3.4)

where |C| is the number of features in C, and m(C,P) = 1 indicates a match. In

other words, a frequent configuration C matches a candidate neighborhood P if their

dot product equals the number of visual words in C.
From matched neighborhoods of the test image we can derive a measure of the
probability for a feature to lie on an instance of the object class. This measure
effectively enables to pre-select features lying on the object, and hence it can sub-
stantially ease the life of a subsequent object detector. Thanks to this, the latter

3Rc is not part of the rule. In this example the rule consists of the yellow regions only.

3.3. Mining Frequent Feature Configurations 50

Figure 3.11: Discriminant Frequent Spatial Configurations. First row: examples

of activations on the training set. Second/third row: examples of activations on the

test-set. Note: Rc (white) is not part of the mined rule in this example.

can focus on higher level tasks, such as localizing the object up to a bounding-box,
determining its precise extent (outlines), its pose, a part decomposition, and so on.
We compute this class-specific feature confidence measure as follows. For each fea-
ture in the image, we count how often it is part of a matched neighborhood. The
more matched configurations a features participates into, the more it is likely to
cover part of an object instance. More precisely, the confidence measure for each
feature Ri is defined as:

conf(Ri) =
1

M ∗W

∑

C

∑

{P|Ri∈P}

1
k
∗m(C,P) (3.5)

where M is the number of configurations mined on the training data, W is the

number of neighborhoods in the test image, k is the number of appearance clusters

to which Ri was soft-assigned (equation (3.2)).

3.3. Mining Frequent Feature Configurations 51

3.3.3 Experiments and Results

We present results on four diverse object classes. After discussing the quality of the

results via some visual examples, we perform a quantitative performance evaluation.

The experiments are conducted on the following datasets. The objects in the positive

training images were annotated by a bounding-box, except for the TUD Motorbikes

where full images without bounding box were used for training.

ETHZ Giraffes. Training was conducted on 93 images of giraffes we downloaded

from Google Images. No background training data was used in this case. The

positive test images are the 87 Giraffes from the ETHZ Shape Classes dataset [Ferrari

et al., 2006]. All 168 images of the other classes from [Ferrari et al., 2006] are used

as negative test set (as done for object detection from hand-drawings by [Ferrari et

al., 2006]).

GRAZ Bikes. All training data and the positive test set are as defined in the

paper which originally proposed this dataset [Opelt et al., 2003]. As negative test

set we took the first 200 images from the CALTECH-101 background [Fei-Fei et al.,

2004] class. This negative test set is used as well with all following datasets.

TUD Motorbikes. The TUD Motorbikes dataset [Various, 2005] consists of 115

images containing 125 motorbikes, which we used as positive test set. The positive

training images are the Caltech-4 motorbikes [Fergus et al., 2003] (no bounding-

boxes given). As background training set we randomly picked 200 images from the

CALTECH-256 [Griffin et al., 2007] background class.

CALTECH Cars Rear. This dataset features 126 rear-views of cars and 1155

street scenes without cars, used as training set. Moreover, the dataset also provides

a test set of 526 images containing cars, as described in [Fergus et al., 2003].

The first three datasets are particularly challenging, as objects appear in severely

cluttered images, and present scale and intra-class variations. Moreover, the GRAZ

Bikes and TUD Motorbikes are partially occluded in several images. The CALTECH

Cars are somewhat easier, in that they appear rather centered in the images and

vary only moderately in scale.

Visual Examples

We present here visual examples to demonstrate the quality of the mined feature

configurations, and of features selected based on the confidence values our approach

3.3. Mining Frequent Feature Configurations 52

Figure 3.12: Results: Visual Examples. (See text for discussion.)

delivers. Figure 3.12 shows several test images, with all overlaid features having a

confidence (equation 3.5) above 20% of the maximum possible value. These features

belong to configurations deemed frequent and discriminative by our method. The

brighter the color of a feature, the higher its confidence.

The large majority of features are systematically selected on the object, in spite

of scale changes, clutter, and intra-class variations. It is particularly interesting to

notice how the selected features adapt to the class so as to cover its most discrim-

inative parts. For bikes, the rather structural configurations of frame parts and

wheel fragments dominate, whereas for giraffes the pattern of the fur is selected

(i.e. the miner adapts to behave like a texture detector). Besides, notice how our

measure effectively selects object features, and discards background ones. These

results confirm that our approach effectively primes object features while pruning

away the majority of background ones. Hence, it is a valuable intermediate step

before applying higher-level processing such as object localization algorithms.

3.3. Mining Frequent Feature Configurations 53

Quantitative Evaluation of Feature Selection

We quantify the performance of our method for assigning class-specific confidences

to features, based on two experiments. In the first experiment we measure bounding

box hit rate (BBHR) over the positive test sets. A bounding-box hit is counted if

more than k features selected by our method lie on the object (inside the bounding

box). Hence, BBHR is the number of BBH divided by the total number of object

instances in the positive test set. To perform this evaluation we use ground-truth

bounding-box annotations available for the test images (these were not used to

produce the results). The rationale behind the BBHR measure is that the later

processes our method is intended to aid, need at least a certain number of features

to operate reliably (e.g recognition - deciding whether the object is actually present

in the image, or localization - determining a bounding-box framing the object). We

set BBHR in relation with the false positive rate (FPR). This is the number of

selected features lying outside the bounding box, divided by the total number of

selected features in the image (averaged over all positive test images). Essentially

FPR measures the (inverse) signal-to-noise ratio output by our method, i.e. the

proportion of irrelevant features it delivers (the lower the better). We compare our

method against a baseline, where the confidence for a feature is computed as follows.

For each visual word in the codebook we count how many times it appears inside

the bounding-box annotations of the training data. This way a visual word, which

appears often on the annotated training objects is weighted higher.

On a test image, we match features to the codebook and define BBHR by summing

up the weighted matches for each feature. That is, instead of using configurations

of features like our system does, the baseline consists of weighted single feature

matches – essentially a bag-of-words scheme. This allows to compare our method

to the default input to an object recognition system.

Figure 3.13 shows FPR on the y-axis and BBHR on the x-axis, for k = 5 and for

each dataset. The error bars show the standard deviation of the FPR at a given

BBHR. Curves are generated by varying the selection threshold over the feature

confidences. As the plots show, our feature selection method is very precise, in

that it consistently delivers a low FPR (always below 20%, but for high BBHR on

the Cars Rear dataset, where it grows to a moderate 35%). This is an important

characteristic, because it enables later processes to rely on a clean input, composed

of a large majority of features on the object. This appears especially valuable when

compared to the low signal-to-noise ratio of the initially extracted features (there

are typically 500 − 1000 features in an image, out of which about 10 − 200 lie on

the object). The experiments also reveal the substantial performance improvement

over the baseline, which we outperform substantially.

The feature selection ability comes at a low price in terms of missed objects: on

three of the datasets our method selected at least 5 features (typically many more,

3.3. Mining Frequent Feature Configurations 54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bounding Box Hit Rate

M
e

a
n

 F
a

ls
e

 P
o

si
ti

v
e

 R
a

te

Gira!es [k=5]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bounding Box Hit Rate

M
e

a
n

 F
a

ls
e

 P
o

si
ti

v
e

 R
a

te

GRAZ Bikes [k=5]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bounding Box Hit Rate

M
e

a
n

 F
a

ls
e

 P
o

si
ti

v
e

 R
a

te

TUD Motorbikes [k=5]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Bounding Box Hit Rate

M
e

a
n

 F
a

ls
e

 P
o

si
ti

v
e

 R
a

te

CALTECH Cars Rear [k=5]

Figure 3.13: Bounding box hit rates for Giraffes, Bikes, Motorbikes, and Cars

Rear Views (lower is better, baseline with diamond marker).

as in figure 3.12) on about 90% of the object instances. The lower BBHR on the

TUD Motorbikes might be due to an excessively high support threshold for mining

or a bad visual vocabulary.

The second experiment evaluates our method on the negative test sets (i.e. on image

without any instance of the object class). The idea is to measure how distinctive

the method is: does it select very few features on negative images? This is relevant

because the number of features selected on negative images relates to the compu-

tational resources the later processing stages will waste on irrelevant data (and to

the chances they will get confused and produce wrong results). Figure 3.14 reports

the percentage of negative images (y-axis) where at most v features are selected (x-

axis). The feature selection threshold is left fixed for each curve, to the one yielding

70%/90% BBHR on the positive dataset (a sensible operating point). As the plots

show, at 70% BBHR the method returns extremely few features on the negative

images of giraffes and bikes (on 90% of the images it returns less than 3 features).

As in the previous experiment, the performance is lower on Motorbikes, but it re-

mains good (in 70% of the images it returns less than 8 features). As expected, at

the challenging operating point of 90% BBHR the method returns more features.

Nevertheless, it remains distinctive even in this case: 1 in 3 negative images have

no selected features, and 70% of the images have less than 10 (remember, we start

from 500 − 1000). The baseline is evaluated in the same manner as for the BBHR

plots, and it performs considerably worse than our method.

3.3. Mining Frequent Feature Configurations 55

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
n

e
g

. i
m

g
s.

 w
it

h
 a

t
m

o
st

 v
 f

a
ls

e
 p

o
si

ti
v

e
s

max nr. of false positives [v]

Gira!es

90% Bounding Box Hit rate (baseline)

70% Bounding Box Hit rate (baseline)

90% Bounding Box Hit rate

70% Bounding Box Hit rate

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
n

e
g

. i
m

g
s.

 w
it

h
 a

t
m

o
st

 v
 f

a
ls

e
 p

o
si

ti
v

e
s

max nr. of false positives [v]

Bikes

90% Bounding Box Hit rate (baseline)

70% Bounding Box Hit rate (baseline)

90% Bounding Box Hit rate

70% Bounding Box Hit rate

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
n

e
g

. i
m

g
s.

 w
it

h
 a

t
m

o
st

 v
 f

a
ls

e
 p

o
si

ti
v

e
s

max nr. of false positives [v]

TUD Motorbikes

70% Bounding Box Hit rate (baseline)

68% Bounding Box Hit rate

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f
n

e
g

. i
m

g
s.

 w
it

h
 a

t
m

o
st

 v
 f

a
ls

e
 p

o
si

ti
v

e
s

max nr. of false positives [v]

Cars Rear View

90% Bounding Box Hit rate (baseline)

70% Bounding Box Hit rate (baseline)

90% Bounding Box Hit rate

70% Bounding Box Hit rate

Figure 3.14: False positives on negative test images for Giraffes, Bikes, Motorbikes,

Cars Rear View (higher is better). For the motorbikes we show the experiment for

the threshold at 68% BBHR since this is the maximum we reached.

Data T suppmin/conf min Q t CPU

Giraffes 26054 0.20% / 100% 9 2.58 s

Bikes 42390 0.25% / 95% 9 0.91 s

Motorbikes 29001 0.28% / 100% 9 0.90 s

Cars Rear 74296 0.1% / 90% 9 53.02 s

Table 3.2: Statistics for the mining experiments. Columns: Number of Transac-

tions T , minimal support and confidence thresholds, number of tiles Q, CPU time

(in seconds).

3.3. Mining Frequent Feature Configurations 56

Computation times

The CPU-time measurements are given in Table 3.2. The time is measured for the

frequent itemset mining stage including rule creation, but after feature extraction

and neighborhoods construction. This because the required processing can be done

offline and the required time scales linearly with the number of images. For the

mining we use an implementation of the APriori algorithm from [Borgelt, 2003].

All experiments were done on a 3 GHz Intel Pentium 4 with 1GB RAM. These

measurements demonstrate the scalability of our mining approach, where the most

characteristic feature configurations can be extracted from tens of thousands of

candidates in a matter of seconds. The mined configurations might be used readily

within other frameworks. Table 3.2 also summarizes the mining parameters used

for each dataset.

In summary, our experimental evaluation demonstrates that the class-specific confi-

dence measure acts as a good feature selector. Hence, our technique offers a valuable

intermediate layer between feature extraction and object detection or other higher-

level processes.

3.4. From Frequent Configurations to Objects 57

3.4 From Frequent Configurations to Objects

In the preceding section we proposed a method, which mines class-specific frequent

feature configurations. In this section we try to feed these configurations into an

existing object class recognition framework, which builds on (single) instances of

local features. More specifically, we combine our method with the Implicit Shape

Model (ISM) of [Leibe and Schiele, 2003; Leibe et al., 2005].

This combined recognition process can be summarized as follows: The frequent

feature configurations mined in the previous sections represent semantic and dis-

criminant fragments of objects. By matching these fragments to the same kind of

semi-local neighborhoods in candidate images, we can estimate the probability for

the presence of the object class. To that end, we first collect activations of the rules

on the training data. In a second step, following the ISM framework, the activa-

tions are used to vote in a Hough voting space for possible object locations, followed

by a mean-shift search for maxima in the voting space. The following subsections

describe these steps in more detail.

3.4.1 Review of the ISM Approach

In this section we summarize the main concepts of the Implicit Shape Model (ISM).

For that purpose we follow closely the description in [Leibe et al., 2008] and adapt

notation to our framework where necessary.

The ISM forms the core of a coupled object categorization and figure-ground seg-

mentation method proposed by [Leibe and Schiele, 2003; Leibe et al., 2005]. It is a

learned representation for object shape that can combine the information observed

on different training examples for recognition using a probabilistic extension of the

Generalized Hough Transform [Ballard, 1981; Lowe, 2004]. The ISM(V) = (V, PV)

consists of a class-specific visual vocabulary V and a learnt spatial probability dis-

tribution PV , which specifies where each visual word ck ∈ V may be found on the

object.

After a visual vocabulary has been created, the model training procedure proceeds

with learning PV . This is done by collecting all occurrences of the visual words

ck ∈ V and keeping their locations ` relative to the object center (ox, oy):

`(k)
x = (c(k)

x − ox) (3.6)

`(k)
y = (c(k)

y − oy) (3.7)

`(k)
s = c(k)

s (3.8)

For each visual word ck a list L(k) of its occurrences is kept, i.e. PV is expressed in

L(k).

3.4. From Frequent Configurations to Objects 58

Recognition is done using the learnt ISM(V) in a Generalized Hough Transform.

To test a novel image for the presence of the learned object class, we first extract its

features and match them to the visual vocabulary V . Each matched feature then

casts votes for possible position of the object center according to the learned spatial

distribution PV . Consistent hypotheses are then searched as local maxima in the

voting space.

The Hough voting space is 3-dimensional with the dimensions x, y, scale. Coordi-

nates for votes are thus given as follows

xvote = ximg − `(k)
x ∗ (simg/`

(k)
s) (3.9)

yvote = yimg − `(k)
y ∗ (simg/`

(k)
s) (3.10)

svote = simg/`
(k)
s (3.11)

where (ximg, yimg, simg) is the location of an image feature that could be matched to

a visual word and (xocc, yocc, socc) is the kth item from the list of occurrences L(k)

for that visual word on the training data.

Finding the potential locations of an object consists now of finding maxima in the

Hough voting space. [Leibe et al., 2008] propose to use a Mean-Shift search proce-

dure to identify maxima robustly and efficiently.

3.4.2 Recognition with Rule Activations

We now formulate object class detection using a combination of mined frequent

feature configurations and the ISM approach summarized above. The main differ-

ence is, that votes do not originate at all feature locations, but only at locations of

matched frequent configurations. Thus, the slightly adapted derivation is now as

follows.

Suppose we have a set of q annotations for objects on training data. For each an-

notation, the mined frequent configurations C are matched to the neighborhoods P
within the annotation area according to Equation (3.4). For each matched configu-

ration we record the relative position ` of the object center (ox, oy):

`(k)
x = (n(k)

x − ox) (3.12)

`(k)
y = (n(k)

y − oy) (3.13)

`(k)
s = n(k)

s (3.14)

where (n
(k)
x , n

(k)
y , n

(k)
s) refers to the position of the central region of the kth neigh-

borhood matched with the rule. For each rule (P → object) we keep a list of all the

activations L(C) with relative positions of the object center.

3.4. From Frequent Configurations to Objects 59

With the collected evidence we can now detect and locate object candidates in

previously unseen images. As proposed in [Leibe et al., 2005] we collect votes for

the object center location in a three dimensional Hough voting space. That is,

we use our discriminate frequent configurations to detect objects in a generative

recognition framework. In each candidate image we match again the mined frequent

configurations C to the neighborhoods P as in equation (3.4). For each match

m(C,P) we vote in a scale invariant manner with the activations `(k) from the list

L(C).

votex = mx − `(k)
x ∗ (ms/`

(k)
s) (3.15)

votey = my − `(k)
y ∗ (ms/`

(k)
s) (3.16)

votes = (ms/`
(k)
s) (3.17)

where {mx,my,ms} stands for the (x, y, s)-location of the neighborhood P from the

match m(C,P).

Similar to the derivation in [Leibe et al., 2008], this Hough voting procedure can

also be expressed in a probabilistic framework. Given a set of neighborhoods P we

want to determine the probability of the existence of object on at location x. By

matching P to the frequent configurations C the voting can be formulated as follows:

p(on, x|P) =
∑

i

p(on, x|Ci,P)p(Ci|P) (3.18)

≈
∑

i

p(on, x|Ci)p(Ci|P) (3.19)

The simplification of the first term in equation (3.19) is justified, since after mining

only the frequent configurations influence the estimated location of the object on.

It follows further

p(on, x|P) =
∑

i

p(x|on, Ci)p(on|Ci)p(Ci|P) (3.20)

=
∑

i

|L(Ci | d(votei, x) ≤ ε)|
|L(Ci)| ∗ conf(Ci → on) ∗m (3.21)

The first term in equation (3.20) is the Hough vote for position x given for object

on given the rule (C → on). The second term is the confidence that the presence of

the object on can be inferred from the configuration (Ci), and the final term is the

probability that the rule is active. The individual terms can be directly replaced by

the terms shown in equation (3.21), where |L(Ci)| is the length of the activation list

L(Ci) and |L(Ci | d(votei, x) ≤ ε)| is the length of the partial list voting for position

x. The last term m is the match indicator from equation (3.4).

After filling the voting space, maxima in the space are found with a mean-shift

search. Each maximum generates a hypothesis h(x, y, s) with a score derived from

3.4. From Frequent Configurations to Objects 60

the value of the respective maximum. Overlapping hypotheses are treated with an

overlap filter, where from two overlapping hypotheses the one with the higher score

survives.

3.4.3 Experiments and Results

In this section we validate our approach quantitatively by a series of experiments.

A discussion of the mining parameters is followed by a recognition evaluation in an

object class detection task. The experiments were conducted on two datasets:

TUD Motorbikes. (See previous section for description). As background data

for this class a randomly selected subset of the CALTECH-256 [Griffin et al., 2007]

background class was used. The detections are counted as correct if their bounding

box matches the ground-truth annotation (with intersection-over-union > 0.5) and

extra hypotheses are counted as false positives.

UIUC Cars. The UIUC single-scale test set [Agarwal et al., 2004] consists of

170 images containing 200 side views of cars of approximately the same size. Chal-

lenges include partially occluded cars, instances that have low contrast with the

background, and images with highly textured backgrounds.

Tiling Parameters

To investigate the effect of the number of tiles T for the creation of the neighborhoods

N , we ran experiments with different T on the TUD motorbikes dataset [Various,

2005] ranging from a 3x3 to a 6x6 tiling. The results are shown in Figure 3.15.

(Curces are generated by varying through the confidence values for detactions, ob-

tained by aggregating the Hough votes). The neighborhood size was set to S = 5

times the size of the central regions Rc. The mining parameters were held constant

at smin = 0.5% support and cmin = 90% confidence. The best results are obtained

for 9 and 25 tiles. At first sight it is unexpected, that 9 tiles perform better than the

versions with 25 and 16 tiles. However, since the neighborhood size and the mining

parameters are kept constant, the version with 9 (larger) tiles generates more rules.

Having more evidence leads usually to better performance. Increasing the number

of tiles to 36 leads to higher precision in the low recall area, but is punished with

less recall overall. It is somewhat surprising, that the 15 tiles version performs bet-

ter than the 16 tiles configuration. It seems that the mining is easily influenced in

an uncontrolled way by changes in the underlying data, at least on this particular

dataset.

3.4. From Frequent Configurations to Objects 61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Number of Tiles
R

ec
al

l

1 − Precision

36 Tiles, s=0.5% c=90%
25 Tiles, s=0.5% c=90%
16 Tiles, s=0.5% c=90%
 9 Tiles, s=0.5% c=90%

Figure 3.15: Performance per # tiles on TUD Motorbikes.

Mining Parameters

The following set of experiments discusses the effects of the mining parameters. The

first experiment deals with the minimal confidence c. Figure 3.16(left) shows recog-

nition results for different minimal confidence thresholds. Using confidence values

around 80% seems to be the best trade-off between robustness of the rules against

background data and low recall values caused by rules that are too specific. Going

to the extreme of using only 100% confidence rules decreases recall dramatically

while giving nearly no improvement in precision. Using very low confidence of 30%

increases the danger of including false hypotheses with high weight, as can be seen

from the dent of the corresponding curve at low recall. The next experiment looks

into the minimal support threshold and is shown in the middle plot of Figure 3.17.

Again, we measure the overall recognition rates, this time at different support values.

The confidence is held constant at 80%. Using only the extremely frequent configu-

rations with more than 2% support for detection leads to bad performance. This can

be explained by the properties of the TUD and CALTECH motorbikes databases:

The CALTECH images used for mining the rules in this specific example contain for

3.4. From Frequent Configurations to Objects 62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Confidence Test

R
ec

al
l

1 − Precision

25 Tiles s=0.5% c=100%
25 Tiles s=0.5% c=95%
25 Tiles s=0.5% c=80%
25 Tiles s=0.5% c=30%

Figure 3.16: Recognition performance for minimal confidence values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Support Tests

R
ec

al
l

1 − Precision

25 Tiles s=0.25% c=80%
25 Tiles s=0.5% c=80%
25 Tiles s=1% c=80%
25 Tiles s=2% c=80%

Figure 3.17: Recognition performance for minimal support values

3.4. From Frequent Configurations to Objects 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Rule Length

R
ec

al
l

1 − Precision

25 Tiles m=2 s=0.25% c=80%
25 Tiles m=3 s=0.25% c=80%
25 Tiles m=4 s=0.25% c=80%
25 Tiles m=5 s=0.25% c=80%

Figure 3.18: Recognition performance for rulelengths

the most part very clean images of motorbikes in front of white background, such

that even small evidence has mostly positive influence on the recognition rate.

A last experiment was conducted to measure the influence of the length of a rule.

That is, how many features are part of a mined spatial configuration. The recogni-

tion for different rule lengths are shown in the rightmost plot of Figure 3.18, where

m denotes the minimal rule-length. Using a minimal rule length of m = 3 seems

to be the best trade-off between specificity and generality of the frequent config-

urations. Not surprisingly, using only feature configurations with m = 5 or more

elements leads to better precision at the cost of recall.

Mining Performance

This section discusses some of the properties of the frequent itemset mining method.

For the mining we use an implementation of the APriori algorithm from [Borgelt,

2003]. All experiments were done on a 3GHz Intel Pentium 4. The CPU-time

measurements are given for some examples in table 3.3. The time is measured for the

frequent itemset mining step including rule creation, i.e. without feature extraction

and neighborhoods already created. This is usually the case for large databases,

since the required processing can be done offline. The measurements demonstrate

the scalability of the mining approach, where the most characteristic configurations

can be extracted from hundreds of thousands of candidates in a couple of seconds.

This clearly shows the benefits of our approach. Most of the current approaches

3.4. From Frequent Configurations to Objects 64

Data # Transact. CPU Time suppmin/conf min

TUD 20771 2.46 s 0.25% / 80%

UIUC 113156 3.49 s 0.25% / 95%

Table 3.3: Mining statistics for the experiments. Columns: Number of Transac-

tions T , CPU Time and minimal support and confidence thresholds.

which rely on local features for object detection are built on single instances of

these features, or become quickly too complex to handle efficiently. With mining

approach we avoid such limitations. The mined configurations might be used readily

within other frameworks.

Object Detection

To demonstrate the performance of our method, we evaluate it on two visual category

detection tasks:

The plot Figure 3.20 (right) shows the performance measurement results for the

TUD motorbikes. In [Fritz et al., 2005] 81% EER are reported on this set. With

our approach we achieve an EER of 77%, which is comparable. Since the approach

in [Fritz et al., 2005] uses a verification stage with a Minimum Description Length

(MDL) filter and an optional additional SVM layer. Our simple bounding-box-

overlap filter could be replaced by this verification stage. This would probably

increase performance to the same level, since many of the false positives in our system

are caused by overlapping objects, which are falsely removed by the bounding-box

overlap filter. Figure 3.21 shows a few examples of detections on the motorbike

set. Correct detections are shown in yellow, false detections in red. Detections are

robust to clutter and cover examples in a variety of contexts. The wrong detection

can be explained by the covered rear wheel, which makes the precise estimation of

the object center difficult in this example. For the evaluation on the UIUC dataset

we followed the protocol of [Agarwal et al., 2004] and used the evaluation software

provided with the dataset. A codebook was created on the provided training images.

Frequent configurations were mined on the same set, using the provided background

set to find discriminative rules and configurations as discussed in section 3.3.1. The

results on this testset are shown in Figure 3.19. The Equal Error Rate (EER) on

the UIUC single-scale reaches 91%, which is within the state of the art.

3.4. From Frequent Configurations to Objects 65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
UIUC single−scale cars

R
ec

al
l

1 − Precision

UIUC Single Scale Performance

Figure 3.19: Performance on UIUC. EER (91%)

3.4. From Frequent Configurations to Objects 66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TUD 115 Motorbikes − Recognition Performance

R
e

ca
ll

1 − Precision

[9] + SVM

[9] ISM

Our method

Figure 3.20: Performance on TUD Motorbikes. (EER 77%)

3.4. From Frequent Configurations to Objects 67

Figure 3.21: Examples of three correct and one false detection on the TUD mo-

torbikes set.

3.5. Graph Mining as an Alternative to Itemsets 68

3.5 Graph Mining as an Alternative to Itemsets

In the previous sections we built on frequent itemset mining to detect frequent com-

binations of visual words and extended the method to encode spatial configurations

in a semi-local grid. An alternative way to encode spatial relations between local

features is by the means of a graph. The nodes consist of the images’ features la-

beled with their visual word ids, and the edges describe the spatial relation between

features in the image plane. The idea is then to apply mining algorithms, which

operate directly on the graph to identify frequently occurring sub-graphs, which are

correlated with an object or object class. Some of the most popular algorithms in

this field are described in Section 2.5.

The collected the evidence in form of frequent sub-graphs can be seen as weak

classifiers to decide on the presence or absence of an instance of the object class

the graphs were mined for. Thus it is quite natural a next step to add a boosting

method on top of these simple classifiers to learn a stronger classifier for the given

object class.

These two steps, mining of frequent sub-graphs and their combination into a classifier

using boosting, are described in the following subsections in detail. Please note that

this chapter is a summary of joint work with my former Master student Sarah Gugl.

The interested reader can find further details in her report [Gugl, 2007].

3.5.1 Mining of Frequent Feature Graphs

As in the previous sections about itemset mining, the image content is first encoded

using local features which are quantized into a visual vocabulary. Here we use SIFT

features [Lowe, 2004].

The visual words and their relative positions are now encoded in a graph for each

image as follows. Node labels are simply the visual word id. Edge labels encode

the relative positions of the features in a canonical way. To that end we use the

simple encoding schemes as shown in Tables 3.4 and 3.5, respectively. The first

labeling method only encodes the relative position of features, the second method

also includes their relative scales. In both variants canonical labeling is achieved

by following the convention that relations are expressed relative to the node with

the smaller label (i.e. smaller visual word id). Note that we don’t encode distances

(distances between nodes or scale difference), but only smaller/larger relationships.

Using these labeling conventions, we have several options for building a graph per

image:

• Complete Graph

3.5. Graph Mining as an Alternative to Itemsets 69

edge label relative position of the end-vertices
0 xi > xj ∧ yi > yj

1 xi > xj ∧ yi ≤ yj

2 xi ≤ xj ∧ yi > yj

3 xi ≤ xj ∧ yi ≤ yj

Table 3.4: Edge labels for the edge connecting vertices i and j (i < j).

edge label relative position of the end-vertices
0 xi > xj ∧ yi > yj ∧ scalei > scalej

1 xi > xj ∧ yi > yj ∧ scalei ≤ scalej

2 xi > xj ∧ yi ≤ yj ∧ scalei > scalej

3 xi > xj ∧ yi ≤ yj ∧ scalei ≤ scalej

4 xi ≤ xj ∧ yi > yj ∧ scalei > scalej

5 xi ≤ xj ∧ yi > yj ∧ scalei ≤ scalej

6 xi ≤ xj ∧ yi ≤ yj ∧ scalei > scalej

7 xi ≤ xj ∧ yi ≤ yj ∧ scalei ≤ scalej

Table 3.5: Edge labels for the edges connecting vertices i and j (i < j)

• k-Nearest Neighbors of selected features (kNN)

• Neighborhood defined by area around selected features

The 2nd and 3rd option are considered due to scalability reasons: mining fully

connected graphs is computationally more complex. Connecting all n vertices by

an edge yields n(n−1)
2

edges. Assuming a typical image contains about 500 features

would result in a graph with 124′750 edges. A toy example of such a graph is shown in

Figure 3.22(b). Using the kNN approach instead, results not in a single large graph

per image, but in multiple smaller graphs, i.e. for n images with m1,m2, . . . , mn

features
∑n

1 mn graphs will be created in total. So the the mining problem shifts

from mining few large graphs to mining many smaller graphs. Expressing a local

neighborhood by the selection of the k nearest neighbors around each feature is

inspired by [Sivic and Zisserman, 2004]. The resulting graph for a toy example is

shown in Figure 3.22(c). Following our approach from the previous sections about

itemset mining, a neighborhood can also by obtained by defining a scale-invariant

area around a feature. The difference to the previous sections is that we don’t encode

feature’s locations within the area using a tiled grid, but use the graph to encode

the relative positions of features within the neighborhood. The resulting graph for

a toy example is shown in Figure 3.22(d).

Having the images encoded as graphs, the next step consists of mining frequent sub-

graphs. As outlined in Section 2.5 we can choose among several methods to solve this

task. From those we selected FSG, gSpan/CloseGraph and MoSS/MoFa for closer

inspection. (SUBDUE did not qualify because it is an approximate method, AGM

3.5. Graph Mining as an Alternative to Itemsets 70

(a) Toy example image (b) Fully connected graph for the ex-
ample image (edge labeling method A)

(c) k-nearest neighbor graphs for k = 3 (d) Neighborhood area graphs

Figure 3.22: Example image and resulting graph variants.

3.5. Graph Mining as an Alternative to Itemsets 71

FSG gSpan/ MoSS/MoFa

CloseGraph

Search breadth-first depth-first depth-first

TID-Lists yes yes yes

Runtime (s = 5%) a few minutes a few minutes hours

largest 2 edge 1 edge 1 edge

subgraph for

s = 10%

] graphs

supp num

20% 0

15% 2

10% 32

7.5% 124

6% 274

5.5% 447

5% 447

supp num

20% 0

15% 2

10% 22

7.5% 103

6% 247

5.5% 405

5% 700

supp num

20% 0

15% 2

10% 22

7.5% 103

6% 247

5.5% 405

5% −

largest graph

supp]edges

20% 0

15% 1

10% 2

7.5% 3

6% 10

5.5% 19

5% 19

supp]edges

20% 0

15% 1

10% 1

7.5% 3

6% 6

5.5% 10

5% 19

supp]edges

20% 0

15% 1

10% 1

7.5% 3

6% 6

5.5% 10

5% −
Table 3.6: Comparison of FSG, CloseGraph and MoSS/MoFa based on implemen-

tations downloaded from the internet.

since it does not support edge labeling.) For each of the algorithms we retrieved

an implementation from the respective authors’ websites and run tests on a sample

graph. This graph set was constructed from the Caltech-4 motorbikes set [Fergus et

al., 2003] by extracting SIFT features and clustering them into 2788 visual words.

Graphs were constructed as proposed above, with visual word ids as node labels and

encoding relative positions of the nodes as shown in Table 3.5. From Table 3.6 it

can be seen that FSG is the fastest algorithm, followed by gSpan/CloseGraph. The

slowest algorithm is MoSS/MoFa which could not finish the computation within rea-

sonable time for a support of 5%. The numbers of retrieved subgraphs differ for the

same support value. This could be due to differences in the ways of computing the

support values, for example the usage of different rounding methods. While FSG

and gSpan seem to be quite similar, we chose gSpan for our further experiments

because it was shown to outperform FSG in [Yan and Han, 2002].

3.5. Graph Mining as an Alternative to Itemsets 72

Figure 3.23 shows the result of a gSpan run on a real dataset. The dataset is the

caltech-4 motorbikes set [Fergus et al., 2003]. This dataset consists of 153 images

and gSpan was run with a support of 5%. In figure 3.23 one subgraph is shown,

consisting of seven vertices and ten edges and occurring in eight images. As can be

seen from the figure, the subgraph has the same semantical meaning in all images,

i.e. its location is roughly the same on all images — on all eight images out of the

seven activated features, three lie on the back wheel, two on the front wheel, one

between the back wheel and the seat and the last one between the front wheel and

the fender. These figures show, that just like frequent itemsets, frequent subgraphs

have the pleasant property to be easily interpretable.

3.5.2 Classification using Boosting

Having mined frequent subgraphs we want to investigate if they are a suitable choice

for object class recognition and detection. Instead of combining them with an ex-

isting object recognition framework as we did with the frequent itemsets, here we

treat the graphs as simple classifier and combine them into a stronger classifier using

boosting.

That is, we want to find a classification rule that constructs a graph GI for any given

image I and then decides from GI and subgraphs previously mined on a training

set if the image I contains an instance of the trained object class. Thus, the input

to our classification rule is a set of subgraphs {s1, s2, . . . , sn} = Sn and an image

graph GI ∈ G, and the output is a class label y ∈ Y . In other words the goal is to

find a classification rule

h : Sn × G → Y (3.22)

A simple classifier, which adheres to this rule can be constructed by counting the

occurrences of the mined subgraphs si ∈ S in the graph GI and base the classification

decision on a threshold t for the count value:

h(S,GI) =

{
0, numEmbeddings < t

1, numEmbeddings ≥ t ,
(3.23)

where t is the predetermined threshold value and numEmbeddings is the number

of subgraph occurrences in the graph GI . This number is computed by comput-

ing a subgraph-graph-isomorphism for all subgraphs si ∈ S and GI , which for all

subgraphs si gives a number ni = SubgraphGraphIso (si, GI) that counts the em-

beddings of si in GI . numEmbeddings then is determined by summing up all these

numbers:

numEmbeddings =
∑

i

SubgraphGraphIso (si, GI) .

To boost the performance of our simple classifier we use AdaBoost [Freund and

Schapire, 1997]. Our simple classifier (equation 3.23) is now extended with a weight

3.5. Graph Mining as an Alternative to Itemsets 73

Figure 3.23: In all these images a frequent subgraph consisting of seven vertices

and ten edges is shown. As can be seen, the subgraph has the same semantical

meaning in all images

3.5. Graph Mining as an Alternative to Itemsets 74

wi for each subgraph. Taking the weighted sum of the sub-graph counts leads to the

following confidence value confGI
for the graph GI of the image I:

confGI
=

∑
i

wi ∗ ni .

In this manner for each graph a confidence value can be obtained. The weak classifier

now chooses a threshold, that minimizes the error rate:

T = arg

(
min

t

(∑
i

Iht(xi)6=yi

))
,

where ht (xi) is the classifier obtained by choosing t as threshold T . The final

classifier then returned to AdaBoost is

hT (x) =

{
1 if confGx ≥ T,

−1 otherwise.

From the weights WI obtained from the re-weighting procedure of AdaBoost the

subgraph weights wi can be computed by determining a positive and negative weight

for each subgraph. The positive weight is computed from all images belonging to

the class (positive examples) by first determining for each positive example P how

often a given subgraph occurs in the graph GP of this example (giving a number

of occurrences nP) and then multiplying this number by the weight WP of P and

finally summing them up:

posWeighti =
∑

P

nP ∗WP .

The negative weights are obtained similarly, by looking at the images N not belong-

ing to the class (negative examples):

negWeighti =
∑
N

nN ∗WN .

The final weight wi of the subgraph Si then can be obtained by computing

wi =
posWeighti

negWeighti + 1

and finally normalizing all weights

wi =
wi∑
j wj

.

3.5. Graph Mining as an Alternative to Itemsets 75

numAssign

support 1 2 5 10

15% 0.7843 0.7320 0.6013 0.5752

10% 0.3006 0.2353 0.1308 0.0915

7.5% 0.1765 0.1308 0.0327 0.0261

6% 0.1503 0.0850 0.0327 0.0196

5.5% 0.1373 0.0784 0.0261 0.0196

5% 0.1307 0.0654 0.0196 0.0131

Table 3.7: Error rates obtained by using soft assignments to build the image graphs

with numAssign = 2, 5 and 10 and the simple classification rule.

Matching Graphs

When classifying a previously unseen test image, the first step consists of determin-

ing the occurrences of the mined frequent subgraphs in the test image. This requires

matching the mined sub-graphs to the image graph(s) using a subgraph-graph iso-

morphism. Two extensions to a standard isomorphism turned out to be crucial for

performance: soft-matching and edge-length filtering.

The effect of the soft-matching feature (i.e. assigning feature vectors to several

visual word centroids instead of only the single closest one) can be observed from

Table 3.7. It shows the error (false negatives) when applying the classifier to the set

it was trained on (here for the TUD motorbikes positive training set), depending

on the number of visual words features were assigned to. Clearly, assigning to more

than one centroid helps to increase recognition rates, while the benefit diminishes

when increasing the number of visual words assigning to. In summary, introducing

soft-matching helps us reduce false negatives that occurred due to the quantization

of the feature space in visual words.

Another observation concerned false positive graph matches, mostly on background

data. Investigation of a few sample cases revealed, that many of the false positives

appeared due to strongly varying relative edge lengths within the graphs between

training and test-data. This is further illustrated by the histogram plots in Fig-

ure 3.24. These plots show the distribution of edge lengths for several selected node

pairs of frequent subgraphs. The edge length is made scale invariant and canonical

by determining it relative to the scale of the node with the smaller label (i.e. visual

word id). While all the plots show some strong peaks, some of them even form a

single peak Gaussian-like distribution. This means that for many sub-graphs the

distance between nodes is a relevant feature, which was not included in our graph

model, which just contains the relative location of nodes. At the same time it seems

to be a feature which is not very stable (not always clear peaks) and also depends

on the sometimes very imprecise scale assignment of the feature detector. Thus,

3.5. Graph Mining as an Alternative to Itemsets 76

Figure 3.24: Distribution of normalized edge-lengths for node pairs

rather than quantising the edge lengths and encoding it in the graph model, we ex-

tended the basic graph isomorphism with an edge-length filter, which rejects edges

which do not fall into a valid length-range. The range was determined by selecting

peaks higher than c∗ 1
numbins

and filtering outside k neighboring bins of the peak. In

summary, the combined elements leads to the training and classification procedures

summarized in Figures 3.24 and 3.25, respectively.

3.5.3 Experiments and Results

We present experiments and results for several tasks. First, we want to compare the

feature selection capabilities of the graph mining algorithm to the ones obtained us-

ing itemset mining in Section 3.3. We then continue with classification experiments

and some measures on computational performance.

3.5. Graph Mining as an Alternative to Itemsets 77

TrainClassifier(supp, numAssign, label, ratio, T , posTrainImg, negTrainImg)

1: Construct the graph set G for posTrainImg;

2: Learn the frequently occurring subgraphs for the support-values supp;

3: Determine all occurrences of the frequent subgraphs in the graph set G;

4: Learn the distribution of the edge-lengths;

5: Compute the subgraph-graph isomorphisms on positive and negative training data;

7: Discard the subgraph-occurrences, which do not fall within valid edge length ranges;

8: Train the AdaBoost classifier using the remaining subgraph-graph isomorphisms;

Figure 3.25: Pseudo-Code representing the overall training procedure. supp is the

support-value used while mining frequent subgraphs, numAssign is the soft assign-

ment used while matching to a visual vocabulary, ratio and T are two parameters

for the learning of the AdaBoost classifier and posTrainImg and negTrainImg are

the images of the positive and negative part of the training set.

Classify(supp, numAssign, label, classif , testImg, intervals)

1: Compute the graph set G for testImg;

2: Compute the subgraph-graph-isomorphisms;

3: Discard isomorphisms, which do not fall within valid edge length ranges;

4: Classify using the remaining isomorphisms and the given classifier classif ;

Figure 3.26: Pseudo-Code representing the final classification procedure. supp

is the support-value used for the learning of the frequently occurring subgraphs,

numAssign is the soft assignment used while matching to a visual vocabulary,

classif is the previously learned AdaBoost classifier, testImg are the images of

the testset and intervals are the previously learned intervals for the edge-lengths.

The evaluation was conducted on the following datasets already introduced in the

experiments of the previous chapters:

TUD Motorbikes. The TUD Motorbikes dataset [Various, 2005] consists of 115

images containing 125 motorbikes, which we used as positive test set. The positive

training images are the Caltech-4 motorbikes [Fergus et al., 2003] (no bounding-

boxes given). As (negative) background training set we randomly picked 180 images

from Flickr4. We also collected 38 negative test-images.

CALTECH Cars Rear. This dataset features 126 rear-views of cars and 1155

street scenes without cars, used as training set. Moreover, the dataset also provides

a test set of 526 images containing cars, as described in [Fergus et al., 2003]. Due to

the computational restrictions posed by the runtimes of the graph isomorphisms we

4http://www.flickr.com

3.5. Graph Mining as an Alternative to Itemsets 78

Figure 3.27: Bounding box hit rate on TUD Motorbikes (left) and Caltech Cars

Rear (right) (minimal suport 11%, soft assignment parameter 1 and k = 5).

used only 65 images as testsets. The negative training and test sets consisted again

of the 180 and 38 images from Flickr, respectively. For both sets SIFT features

were extracted and clustered into a visual vocabulary of 446 visual words using a

hierarchical agglomerative clustering algorithm,

Feature Selection

We first show results on feature selection, using the same Bounding Box Hit Ratio

(BBHR) measure as in Section 3.3.3. The results are plotted in 3.27 for motorbikes

and cars, respectively. Clearly, overall the values are below the ones reported in

Section 3.3.3 for itemset mining, in spite a simpler negative testset (i.e. one would

expect lower FP rates). However, for the TUD motorbikes case, more instances of

the object class are detected overall than with itemset mining, which is probably due

to soft-matching the visual words. Figures 3.28 and 3.29 show a visualization of

feature activation counts. Compared to the results obtained using itemset mining,

the features seem to cover larger fraction of the object surface, and there are few

discriminant peaks over the false positives occurrences on the background.

Classification

For the classification task we report quantitative results in the form of ROC curves.

Experiments were done by varying the parameters through the value ranges shown in

Table 3.8. ROC curves were obtained by varying the number of AdaBoost iterations

T .The best Equal Error (EER) rates achieved using this method are 70% for the

TUD motorbikes and 82% for cars. These results are slightly below state-of-the-art

classification results on these datasets.

3.5. Graph Mining as an Alternative to Itemsets 79

Figure 3.28: Some examples of the activations of the motorbikes testset. The

examples where taken for a support value of 11%, the edge-labeling method A and

the soft assignment parameter 1. The color of the activated features gives the

number of activations, where blue means that the feature is not often activated, and

red means that the features is activated often.

Parameter Values

T 1..50

support 20%, 15%, 12.5%, 12%, 11% and 10%

soft assignment 1, 2, 5 and 10

ratio 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000

Table 3.8: Information about the variation of the parameters. Here T means the

number of AdaBoost iterations, support the different support values for the compu-

tation of the frequently occurring subgraphs, soft assignment the soft assignments

and ratio is the minimal value of npos : nneg for a subgraph to be used for the classi-

fication, npos and nneg here are the number of subgraph embeddings in the positive

training images and the negative training images, respectively.

3.5. Graph Mining as an Alternative to Itemsets 80

Figure 3.29: Some examples of the activations of the cars-rear testset. The exam-

ples where taken for a support value of 47.5%, the edge-labeling method A and the

soft assignment parameter 1. The color of the activated features gives the number

of activations, where blue means that the feature is not often activated, and red

means that the features is activated often.

Computational performance

The bottleneck in the recognition pipeline based on graph mining turned out to be

the subgraph-graph isomorphisms, which is an NP-complete problem. In contrast,

for the itemset mining based method presented in the previous sections, matching of

mined configurations could be done using sparse dot-products of vectors. Depending

on the graph and the subgraph set the computation time for the subgraph-graph

isomorphism varied between one second (for a support of 20% and a soft assignment

of 1) and two hours (for a support of 5% and a soft assignment of 10). For the

training of the classifiers the required time varies between some milliseconds and

ten minutes, depending mostly on the number of AdaBoost iterations T and the

number of frequently occurring subgraphs.

Overall, using graphs to express configurations of features is a compelling idea, and

subgraph mining turned out to be a suitable method to detect some of the con-

figurations common between instances of an object class. However, in the end the

results were less interesting than those obtained with the simpler grid-based configu-

3.5. Graph Mining as an Alternative to Itemsets 81

(a) soft assignment 1 (b) soft assignment 2

(c) soft assignment 5 (d) soft assignment 10

Figure 3.30: ROC curves of the motorbikes-side class. The curves were obtained

by varying the parameter T from 1 to 50, setting the support value to 11% and

letting the soft assignment parameter and the ratio constant. The curves for the

same soft assignment parameter and different ratios are showed in the same plot.

rations. Furthermore, extensive experimentation on additional datasets and deeper

investigation of the effects of the parameters were inhibited by the computational

demands of the graph-based methods.

3.5. Graph Mining as an Alternative to Itemsets 82

(a) support 37%, soft assignment 1 (b) support 37%, soft assignment 2

(c) support 36%, soft assignment 1 (d) support 36%, soft assignment 2

Figure 3.31: ROC curves of the cars-rear class. The curves were obtained by

varying the parameter T from 1 to 50, setting the support value to 36% and 37%,

setting the soft assignment parameter to 1 and 2 respectively and letting the ratio

constant. The curves for the same support value, the same soft assignment param-

eter and different ratios are showed in the same plot.

3.6. Related work 83

3.6 Related work

Our work relates to two strands of research: object recognition in computer vision,

and data mining. From the data mining perspective, a few earlier works have tried

to apply frequent itemset mining to visual data.

In [Tesic et al., 2003] an extended association rule mining algorithm was used to

mine spatial associations between five classes of texture-tiles in aerial images (forest,

urban, pasture etc.). For this purpose the authors propose a modified APriori

algorithm, which mines so called perceptual-associations, i.e. which types of tiles

appear jointly in the data. This allows for analysis of the aerial image dataset

characteristics, but not for any kind of object (-class) recognition. It is interesting

to note, that the authors cluster the texture descriptors of the aerial tiles into what

they call a “visual thesaurus”, conceptually quite similar to the visual words that

are so popular these days.

In [Ordonez and Omiecinski, 1999] a straight-forward application of association rule

mining is used to identify jointly occurring geometric primitives as a means for

object detection. However, the approach is only evaluated on quite simple artificial

data and thus cannot be compared with the state of the art in object recognition.

In [Antonie et al., 2003] association rules were used to create a classifier for breast

cancer detection from mammogram-images. Each mammogram was first cropped

to contain the same fraction of the breast, and then described by photometric mo-

ments. Compared to our method, both works were only applied to static image data

containing rather small variations.

[Zaiane et al., 1998] mines databases of annotated images using a diverse set of

features such as keywords, file type, and global color and texture features. The

focus is on finding hidden correlations between the different modalities of the data,

rather than on the visual data itself.

From the object recognition perspective our work relates to several subfields. For

our first contribution, mining specific objects from video, a large body of work obvi-

ously exists that deals with mining some kind of information from videos. However,

few works have dealt with the problem of mining objects composed of local features

from video data. In this respect, the closest work to ours is by Sivic and Zisser-

man [Sivic and Zisserman, 2004]. However, there are considerable differences. [Sivic

and Zisserman, 2004] starts by selecting subsets of quantized features. The neigh-

borhoods for mining are always of fixed size (e.g. the 20 nearestneighbors). Each

such neighborhood is expressed as a simple, orderless bag-of-words, represented as a

sparse binary indicator vector. The actual mining proceeds by computing the dot-

product between all pairs of neighborhoods and setting a threshold on the resulting

number of codebook terms they have in common.

3.6. Related work 84

While this definition of a neighborhood is similar in spirit to our transactions, we

also include information about the localization of the feature within its neighbor-

hood. Furthermore, the neighborhood itself is not of fixed size. For scenes contain-

ing significant motion, we can exploit our fast motion segmentation to restrict the

neighborhood to features with similar motions, and hence more likely to belong to

a single object. As another important difference, unlike [Sivic and Zisserman, 2004]

our approach does not require pairwise matching of bag-of-words indicator vectors,

but it relies instead on a frequent itemset mining algorithm, which is a well stud-

ied technique in data mining. This brings the additional benefit of knowing which

regions are common between neighborhoods, versus the dot-product technique only

reporting how many they are. It also opens the doors to a large body of research

on the efficient detection of frequent itemset and many deduced mining methods.

Our extended method for mining frequent feature configurations for object-class type

of data, has to be seen in a wider context of using spatial arrangements in object class

recognition. The idea of using spatial configurations of local features is widely used

in object class recognition. For instance, the constellation model [Fergus et al., 2003]

models the spatial arrangement of local features as a joint probability distribution.

Inference in this fully connected model has high computational complexity and thus

supports only a few features in practice. Fergus et al . thus suggest a simplified and

more efficient star topology in [Fergus et al., 2005].

Closer to our approach is the work of Lazebnik et al ., who propose semi-local ar-

rangements of affine features for object detection [Lazebnik et al., 2004]. Their

method builds directly on features, without vector quantization, and starts by de-

tecting geometrically stable triples of regions in pairs of images. The candidate

pairs are summarized by a description which averages over their geometric arrange-

ment. This description is validated on other examples and, if found repeatedly,

used for recognition. Our approach instead, builds on vector-quantized features,

defines a scale invariant tiled neighborhood, and employs established data mining

techniques to find recurring neighborhoods. In addition to being computationally

much more efficient, this allows for more variability in the feature appearances. We

avoid searching over pairs of images, and mine the whole, large dataset globally at

once.

Expressing configurations of features as graphs is a quite natural idea, and many

works have built on it, e.g . the just mentioned [Fergus et al., 2003]. However, graphs

are a complex data structure, and thus, unlike [Fergus et al., 2003], few works have

proposed scalable algorithms. This was our motivation to look into graph mining

algorithms for that purpose, as discussed in Section 3.5 of this chapter. Here, little

work had been done, and only recently, in parallel to our work, [Nowozin et al., 2007]

have proposed some related methods. They propose learning a classifier based on

boosting weighted substructures. The substructures are selected from the powerset

of visual words in an image. In each iteration of the learning process, the most

3.7. Discussion and Conclusions 85

relevant substructures are found using a graph mining or itemset mining method. In

contrast to our mining methods, the heart of their system is the classifier, which uses

itemset or graph mining at every learning stage as an optimization. Furthermore,

unlike our method for mining frequent feature configurations, their itemset mining

method does not encode any kind of spatial configurations of features.

3.7 Discussion and Conclusions

In the preceding sections we have applied itemset mining methods on a variety of

object recognition tasks. This was motivated by the recently popular visual words,

which allow us to encode an image as a set of items.

Based on this basic notion, we derived methods for video mining, for mining of

feature configurations for object class recognition, and also evaluated alternative

graph mining methods. In all of these areas we proposed methods, which consider

local features not as an orderles set, but add an extra processing layer which encodes

their spatial relationships prior to mining. This resulted in datasets with up to

hundreds of thousands of transactions and up to millions of items.

We could show that itemset mining offers a suitable method to handle these large

amounts of data and to find frequent patterns efficiently. Experiments for a video

mining task showed, that our method is able to mine the most frequently occurring

objects in music video clips. Our extended method for mining frequent feature

configurations was evaluated in the context of object class recognition. We could

show that the mined configurations of features have far higher discriminative power

than individual features (Section 3.3.3). Moreover, the mined itemsets and rules

exhibit the same pleasant properties as their counterparts in other fields: they can

be analyzed and are easily interpretable by humans.

Motivated by these positive results, we combined our method with a very successful

object-class recognition and localization method (the ISM framework of [Leibe et

al., 2008]), hoping, that the use of configurations over individual features would

improve recognition performance. While only a simpler, un-optimised version of

the ISM pipeline was used, the object localization results of the combined system

were not better than the method using only single features as input. Qualitative

observations showed, that the maxima in the voting space were less discriminative

with configurations than with single features. This would lead to the explanation,

that the ISM relies on an agglomeration of (possibly very weak) evidence from many

sources, i.e. every single contribution to collect the maxima in the space counts. In

the contrast, our method mines the bare essence of important feature configurations.

Having less evidence makes the voting procedure more vulnerable to outliers.

3.7. Discussion and Conclusions 86

A side path, which investigated graph mining lead to some interesting initial results,

as the mined patterns showed the same semantic interpretability as the frequent

configurations of visual words obtained using itemset mining. However, it turned

out that the graph mining algorithms are by far not as scalable as itemset mining,

especially for dense graphs, as they are very typical for a fully connected graph of

all local features in an image. While we proposed some initial solutions (semi-local

graphs based on k-NN or spatial neighborhood), further work towards optimizing

the encoding and mining process would be required.

The probably largest disadvantage of the itemset and graph mining based approaches

is that the outcome of the mining is sometimes rather uncontrollable and does not

always behave “linearly”, in the sense that small changes in parameters can lead to

unexpected fluctuations of the results. It could be, that these flucations are exactly

due to the limited amount of data usually available in the common benchmark

datasets for object class recognition.

Several elements of our method could be further optimized. One possible extension

would be to make matching of already mined configurations in novel images even

more efficient using approaches inspired by FP-trees used in itemset mining algo-

rithms such as FP-Growth. An interesting combination with another work would

be to try to express configurations of local features as spatial pyramids. Similar

to the spatial pyramid match kernels used in [Lazebnik et al., 2006], but on a local

level instead of a global level. The resulting “hierarchical configurations” could then

again be treated with itemset mining methods to find interesting spatial patterns of

local features.

Overall, while only the first few steps with itemset mining in databases of visual

words have been presented here, we believe that the approach has further potential.

This is for two reasons: philosophically, mining fits quite well between the two

extremes of learning a model, or using a simple exemplar based approach. While

popular methods methods such as pLSA are able to learn the hidden concepts [Sivic

et al., 2005], that make up an object(-class) they suffer from scalability. On the

other extreme of the spectrum, exemplar-based approaches have been shown [Chum

and Zisserman, 2007] to be a very straightforward and powerful approach for object

class recognition, too. (Itemset) mining methods fit just between those: No hidden

concepts can be learned as in pLSA, but the data is efficiently analyzed for the most

essential patterns, neglecting irrelevant information. The latter is directly leads to

the second reason: the availability of huge datasets. Enormous amounts of data

(e.g . on the Internet) might lead to approaches which do not require any models

any more, but efficient analysis of the data. Furthermore, thinking towards on-line

learning, unsupervised learning, or on-line relevance feedback, methods are required,

that answer every potential user query or intent sufficiently well. Methods, which

require extensive training for each individual object (-class) to be recognized are not

of much use in such a scenario.

4
Mining Objects and Events in

large, multimodal Datasets

4.1 Introduction

In this chapter we take data mining in visual data to a higher level and to larger

amounts of data. Instead of mining basic visual entities such as frequent feature

configurations, we deal with the task of automatically detecting objects (such as

landmark buildings) from large amounts of visual data on the Internet.

This task has to be seen in the context of the astonishing growth of the Internet

in the last 10 years, both in terms of users and technical capabilities. Combined

with the widespread use of digital cameras, this growth has led to the creation of

large online databases of visual data, most notably community photo collections

such as Flickr (http://www.flickr.com). These collections contain vast amounts

of images, which pose both great challenges and opportunities to the computer

vision researcher. While the large number of data items demands extremely scalable

algorithms and systems, the collections also contain a great deal of multi-modal

information with redundand descriptions across modalities, which is the key for

unsupervised mining from the Internet.

Against the backdrop of the state-of-the-art object recognition, these developments

allow us to deal with a crucial but often neglected building block towards Internet-

scale image retrieval: the automated collection of a high quality image database with

complete annotations. More precisely, from the large amount of sparsely labeled con-

tent in community photo collections, the task is to mine clusters of images containing

objects in a fully unsupervised manner. For each mined item, we automatically de-

rive a textual description and links to related content on the Internet. The resulting

“cleaned” image database for the mined objects and events is of far higher quality

than the original data and facilitates a variety of applications. For example, the

mined entities can be used for automated annotation of photos uploaded to com-

munity collections, for retrieval and browsing of landmark buildings [Philbin et al.,

4.2. Community Photo Collections on the Internet 88

2007], automatic 3D reconstruction of landmarks [Vergauwen and Van Gool, 2006;

Goesele et al., 2007], or for tourist guide applications on mobile devices [Paletta

et al., 2006; Quack et al., 2008; Takacs et al., 2008] (where users can point the

integrated camera of their device to a sight and retrieve information about it).

4.1.1 Outline of the chapter

In this chapter we demonstrate fully automatic, world-scale image mining from

community photo collections.

We first introduce the most relevant sources for photos on the Internet (Section 4.2).

We collect data from some of these sources and cluster the retrieved photos accord-

ing to several different modalities (including visual content and text labels) and

clustering strategies (Section 4.3.2).

For each cluster, we additionally calculate a set of cues, such as the number of

different days the photos in the cluster were taken on, the number of users who

took the photos, etc. We show how these additional features can be used to train

a subsequent classifier, which determines if an image cluster represents an object or

an event (Section 4.4).

We then apply Frequent Itemset Mining on the text associated with each cluster

in order to assign cluster labels. We propose an algorithm that employs the result-

ing frequent itemset labels to link clusters to Wikipedia pages providing additional

information about the cluster content, and that then in turn takes the Wikipedia

entries to verify clusters and filter out false assignments (Section 4.4.2).

Closing the loop, we finally demonstrate how the verified clusters can be used to

automatically label and geo-locate additional photos, for which no geotags were

available in the first place (Section 4.5).

Results for all steps of the processing pipeline are then shown in Section 4.6.

4.2 Community Photo Collections on the Inter-

net

Sharing information is one of the main purposes of the Internet. While in early

years most of the published content consisted of text documents, technical advances

led to the ability to share multimedia data such as photos and videos. The sharing

aspect gained increasing attention and led to the formation of specific destinations

on the Internet focussing on this key ability. Being able to share photos with friends

and family is probably one of the most popular activities in this area. The sites

4.2. Community Photo Collections on the Internet 89

Type Example Count

Location/Travel nyc, italy, trip 54

People girl, baby, 7

Activity/Event wedding, party, concert 14

Other/Abstract animal, sky, red 67

Table 4.1: Tag statistics

which offer these desired functionalities to the end-user are becoming a great pool

of imagery for computer vision research. One of the most popular photo-sharing

sites, Flickr, shall serve as an example to explain the available features and their

use for our purposes.

Flickr (http://www.flickr.com) was founded in early 2004, just a few months

before the research for this thesis started. As of end of 2007 it hosted more than 2

billion images. Some of the features relevant for our purpose include:

Tagging / Folksonomy: The term folksonomy [Mathes, ; Smith, 2004; Wal,

2005] stands for the concept of collaborative annotation of documents by the means

of so-called tags. A tag is a keyword or term assigned to a piece of information,

e.g . a text document or an image. In contrast to classical annotation, tagging does

rely neither on a controlled vocabulary nor on specially trained editors. In other

words, anyone can assign any word to a given piece of data. Figure 4.1 shows the

most popular tags on flickr. This approach simplifies annotation for the annotating

person drastically. On the other hand, classic problems such as synonymy, polysemy

or imprecise descriptions due to the typically very short single-word tags are not

dealt with. While the resulting annotation of data is of far lower quality than its

counterparts created by trained professionals for traditional archives, they are much

more precise than for instance the text of a web-page an image is embedded in. In

fact, the large user base (up to millions of users) contributing to the tagging efforts

leads to an increased probability that a data item referring to the same content is

indeed frequently labeled with the same tag. For the vision research community

photo collections with tagging capabilities thus provide access to a large database of

images with weak annotations. Note that the most popular tags in Figure 4.1 also

give an insight on the type of pictures uploaded to Flickr. Table 4.1 shows statistics

for the most popular tags (as of September 2008). As can be seen, a large fraction

of photos is related to some location or travel. Many of these photos will contain

pictures of touristic sights such as landmark buildings, and are thus optimal for our

endeavor.

Geotagging: Geotagging is a special form of tagging, where a piece of data is la-

beled with a geographic location it is related to. For image databases this typically is

4.2. Community Photo Collections on the Internet 90

Figure 4.1: Most popular tags on Flickr. The size of the text is proportional to

the tag’s popularity.

Figure 4.2: Tags and geotags on Flickr. Dashed Box: Textual tags, and machine

tags (describing the mobile network location in form of a Cell Global Identifier).

Solid Box: Location name based on GPS coordinates.

4.2. Community Photo Collections on the Internet 91

the location a photo was taken at. Geotagging can be provided in several forms, the

most precise being longitude and latitude values obtained from a Global Positioning

device (GPS). Further possibilities are annotation with a mobile phone cell tower

identifier (CGI, Cell Global Identity, see Chapter 5.2 for a detailed description),

manual assignment to a postal address, or placing the item manually onto a digital

map. Flickr introduced geotagging officially in August 2006. Users can provide GPS

locations with their photos or drag them to a map manually. Furthermore, so called

“machine tags” allow users to provide information about mobile network cell-tower

ids in a special tagging format, Figure 4.2 shows an example. Flickr reports that

over 2 million such geotagged photos are currently uploaded each month. As we will

discuss below, we make extensive use of this geotagging information.

API: In context of the “Web 2.0” movement, many on-line platforms offer access

to their data and services by means of an Application Programming Interface (API)

usually implemented as a web-service. For instance, Flickr allows querying their

database of photos using several criteria, e.g. by tag, by time, by user or by geo-

graphic location. The list of returned photos for an API call allows to download

the image itself and related meta-data such as tags, descriptions, user comments, or

geo-information. Having this kind of access allows us to integrate databases such as

Flickr in our software easily.

Besides Flickr, the following photo-sharing sites may also be of interest to the vision

researcher:

Panoramio.com: Panoramio focusses on geotagging. All photos on the platform

are geotagged, however, the only available textual description is a title, i.e. no

tagging functionality is offered to end-users. Like Flickr, Panoramio also offers an

API. Most photos on Panoramio are travel related photos.

Facebook.com: Facebook is a digital community with a focus on social life and

student life, rather than photo sharing. However, the integrated ability to upload

fotos quickly made it the largest photo-sharing web-site in the world. The stumbling

number of 24 million photos are uploaded to Facebook – daily. The photos on

facebook cover a wide range of topics. The largest fraction seems to cover events,

people etc. due to the platform’s focus on social networking rather than photography.

Picasa Web Albums: Picasa is a desktop photo management tool provided by

Google. Users can export their albums to their Google account to share the albums.

While several features including tagging and geotagging are available to users, at the

time of writing the platform seems to be a conglomerate of individual web-albums

4.3. Mining Clusters 92

rather than a large pool of photos with global search and sharing abilities. An API

to the Picasa web-albums is available.

In this work we focus on data from Flickr. While it is not the largest pool of photos

on the Internet, it is the one with the best quality of data and content.

4.3 Mining Clusters

Our approach is based on photographs which have been tagged with their geographic

location. This allows us to mine the world in a scalable manner without any prior

knowledge on landmarks and their locations. To that end, we partition the world

into a grid of square tiles and retrieve for each tile all the corresponding geotagged

photos from Flickr. The geographic tiling allows us to handle the size of this vast

problem and to parallelize computations.

4.3.1 Gathering the data

To gather the raw data, we query community photo collections such as Flickr. First,

we divide the earth’s surface into square tiles Tk of about 200m side length. A tile

center is set every 100m (in longitude and latitude direction), such that the tiles

have a high overlap. For each tile, we query the Flickr API with the tile’s center

coordinates and bounding box to obtain all geotagged photos for that area. Figure

4.3 shows a section of a map with the tiles used for querying overlaid. In total, we

processed about 70′000 tiles for this work, covering several European urban centers,

namely Paris, Rome, Venice, Oxford, Zurich, Pisa, Munich, Tallinn, Prague, and

St. Petersburg. Table 4.2 lists the urban areas we covered and the number of tiles

and photos retrieved for each area. In total, we covered an area of about 700 square

kilometers. The majority of tiles (about 52′000) were empty. The remaining tiles

contained on average 10 and a maximum of 3750 photos. For each photo we down-

loaded, we also obtained the associated metadata, namely the textual descriptions

(tags, title, description), user-id, and timestamps.

4.3.2 Photo Clustering

Once the photos for each tile have been downloaded, we process each cell to find

clusters of photos with similar content as object candidates. We first create dissim-

ilarity matrices for several modalities (visual and text) by calculating the pairwise

distances between photos for each modality. A hierarchical clustering step on the

dissimilarity matrices then creates clusters of photos for the same object or event.

In the following we discuss the features and distances used for each modality.

4.3. Mining Clusters 93

Figure 4.3: Tiles over Paris. The size of a tile is marked in red. Note the overlap

of 50% (100m horizontally and vertically).

Visual Features and Similarity

To identify pairs of photos which contain the same object, we employ matching

based on local, scale invariant features and projective geometry. We first extract

visual features from each photo. For this, we employ again SURF [Bay et al.,

2006b] features due to their fast extraction times and compact description shown

in earlier works. Each image is thus represented as a bag of 64-dimensional SURF

feature vectors. For each pair of images in a tile Tk, we find matching features

by calculating the nearest neighbor (NN) in Euclidean distance between all feature

pairs, followed by a verification with the 2nd nearest neighbor criterion from [Lowe,

2004]. Note that this linear matching procedure is fast enough, since the problem

is separated into the geographic tiles. Using scaleable indexing methods such as the

ones discussed in Chapter 6 could lower the processing times of the system even

further, while slightly compromising matching precision.

To find object candidates from the matching features we next calculate homography

mappings for each matched image pair {i, j} [Hartley and Zisserman, 2004]

Hxi
n = xj

n , n ∈ 1 . . . 4 , (4.1)

4.3. Mining Clusters 94

0 500 1000 1500 2000 2500 3000 3500 4000

10
0

10
1

10
2

10
3

10
4

10
5

Number of Photos

N
um

be
r

of
 T

ile
s

Figure 4.4: Number of photos per tile (log scale).

Name # tiles #photos area (km2)
Munich 18’228 24’069 184.99
Oxford 2’112 7’431 22.05
Paris 12’532 87’452 127.57
Pisa 723 1’950 7.78
Prague 11’110 28’872 113.22
Rome 14’397 48’750 146.38
St. Petersburg 3’400 2’573 35.18
Tallinn 890 1’350 9.51
Venice 449 7’708 4.92
Zurich 5’663 12’602 58.15
Total 69’504 222’757 709.74

Table 4.2: Urban areas processed in this work and the number of tiles and photos

per area.

4.3. Mining Clusters 95

where H is the 3×3 homography whose 8 degrees of freedom can be solved with four

point correspondences n ∈ 1 . . . 4. To be robust against the aforementioned outliers,

we estimate H using RANSAC [Fischler and Bolles., 1981]. The quality of several

estimated models is measured by the number of inliers, where an inlier I is defined

by a threshold on the residual error. The residual error for the model is determined

by the distance of the true points from the points generated by the estimated H.

We accept hypotheses with at least 10 inliers I as a match.

Using this kind of homography mapping works well in our case, since we have many

photos taken from similar viewpoints. A fundamental matrix could handle larger

viewpoint changes, but it is also more costly to compute, since it requires more inliers

to find the correct model. Furthermore, mapping planar elements (such as building

facades) works very well with homographies. An example is shown in Figure 4.5.

In spite of the strong viewpoint change, a reasonable homography mapping could

be found in this example, while most of the true outliers are removed. A similar

approach (using affine transformations estimate from single affine covariant features)

has also been successfully applied in [Philbin et al., 2007] for a retrieval engine on

a database of landmarks from Oxford handling astonishing viewpoint and scale

changes. As mentioned above, the accuracy achieved with these kinds of visual

features is far better than with any kind of global features, which are still often used

for mining and retrieval in visual databases.

The distance matrix is built from the number of inlying feature matches Iij for

each image pair, normalized by the maximum number of inliers found in the whole

dataset.

dij =

{
1− Iij

Imax
if Iij ≥ 10

∞ if Iij < 10
(4.2)

In our implementation we set Imax = 1000, since we extract at most 1000 SURF

features per image (sorted by their discriminance), i.e. the distance dij ranges in

[0 . . . 0.99]. Figure 4.6 shows the distribution of distances for all pairs with distance

dij < inf in the dataset. It can be observed, that the majority of pairs have a rather

large distance, corresponding to 10-20 inlying feature matches.

Text Features and Similarity

Three sources for text meta-data were considered for each photo downloaded from

Flickr: tags, title, and description. We combine these three text fields into a single

text per photo for further processing stages. The first stage consists of a stoplist.

In addition to the common stopwords, this list also contains collection-specific stop-

words such as years, months, and terms such as “geotagged”, “trip”, “vacation”,

“honeymoon”, etc. Furthermore, from each photo’s geotag we know its location

and (through reverse geocoding [Lewis et al., 2007]) the corresponding place name,

4.3. Mining Clusters 96

Figure 4.5: Feature matching with Homography. SURF feature matches are shown

in red, inlying matches for the estimated homography in green.

for instance “Rome, Italy”. These location-specific place names were added to the

stoplist for each photo depending on its geotag. Filtering terms with these custom

stop-lists turned out to be crucial to obtain good cluster labels in later processing

stages.

As with the visual features, we proceed by calculating the pairwise text similarities

between the documents (photos). A vector space model with term weighting of the

following form is applied:

wi,j = Li,j ∗Gi ∗Nj

Note that in the standard tf ∗ idf ranking [Salton and McGill, 1986] Li,j = tf i,j,

Gi = log D
di

and Nj = 1, where tf i,j is the frequency of term i in document j, di is the

4.3. Mining Clusters 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Distance

N
um

be
r

of
 p

ai
rs

Figure 4.6: Histogram of visual distance values (log scale).

number of documents containing term i, and D is the total number of documents.

In our system, the weighting elements are as follows

Li,j =
log(tf i,j) + 1∑
j

(
log(tf i,j) + 1

) (4.3)

Gi = log

(
D − di

di

)
(4.4)

Nj =
Uj

1 + 0.0115 ∗ Uj

where Uj is the number of unique terms in document j. The rationale behind

the modifications of the weighting terms over the standard tf ∗ idf are as follows.

The logarithm in Li,j adjusts/dampens weights of multiple occurring words per

document. Gi is a probabilistic inverse document frequency as proposed in [Croft

and Harper, 1997], which, unlike idf , assigns negative weights to terms that appear

in more than half the documents. Finally, the additional term Nj is a pivoted unique

normalization which is used to correct for discrepancies in document lengths [Singhal

et al., 1996]. We use the mySQL (www.mysql.com) full-text search, which can be

configured to use the modified tf ∗ idf ranking, to compute the text distance matrix

for the photos belonging to each geographic grid tile.

Additional Features

Besides the visual and text similarities between photos, we also considered several

additional cues. We store the timestamps and the user data (i.e. the Flickr user,

4.3. Mining Clusters 98

Visual Text
Single-link 0.985 0.989
Complete-link 0.99 0.99
Average-link 0.99 0.99

Table 4.3: Cut-off distances for clustering

who took or uploaded a photo). As we will show below, these cues allow us to

classify each cluster candidate into event or object types.

Clustering

For each tile Tk, we apply hierarchical agglomerative clustering [Webb, 2002; Jain

and Dubes, 1988] to the distance matrix of each modality. This clustering approach

was chosen, since it builds on a dissimilarity matrix and is not restricted to met-

ric spaces. It is also rather flexible and very fast, once the full distance matrix is

available. Using different linking criteria for cluster merging allows us to create dif-

ferent kinds of clusters. We employed the linkage methods described in Chapter 2.2,

namely single-link, complete-link, and average-link.

The motivation behind these measures is to capture different kinds of visual proper-

ties that allow us to associate a semantic interpretation with the resulting clusters.

Single-link clustering adds images to a cluster as long as they yield a good match

to at least one cluster member. This results in elongated clusters that tend to span

a certain area. As a result, if visual features are the basis for clustering, this proce-

dure can group panoramas of images that have been taken from the same viewpoint,

or series of images around an object. In contrast, complete-link clustering enforces

that a new image matches to all cluster members. This strategy will therefore re-

sult in very tight clusters that contain similar views of the same object or building.

Average-link clustering, finally, takes a compromise between those two extremes

and provides clusters that still prefer views of the same object, while allowing more

flexibility in viewpoint shifts. In our approach we do not want to restrict ourselves

to any single of those alternatives; instead, we pursue them in parallel. Such an

approach makes it possible to derive additional information from a comparison of

cluster outcomes. For example, we may first identify distinct objects or landmark

buildings through complete- or average-link clusters and later find out which of them

are located close to each other by their membership in the same single-link cluster.

Table 4.3 summarizes the linkages and cutoff-distances used for each modality.

4.4. Labeling Clusters 99

Figure 4.7: Class examples: object, event, none.

4.4 Labeling Clusters

In the preceding sections, images with similar content or annotations were grouped

into clusters, which ideally should depict a single entity. In this section, the goal is

to look into the contents of the clusters in more detail. First, we classify the clusters

into objects and events. In a next step, we derive textual labels for the clusters from

the associated metadata. Furthermore, we introduce an approach to formulate text

queries from the labels, which are submitted to Wikipedia to assign articles to the

clusters. A final verification step uses the images found in the Wikipedia articles to

verify this assignment.

4.4.1 Classification into Objects and Events

To discriminate between objects and events, we rely on the collected metadata

for the photos in each cluster. An “object” is here defined as any rigid physical

item with a fixed position, such as landmark buildings, statues, etc. As “events”,

we consider occasions that took place at a specific time and location, for instance

concerts, parties, etc. Thus, we include as features f1, f2 the number of unique

days the photos in a cluster were taken at (obtained from the photos’ timestamps)

and the number of different users who “contributed” photos to the cluster divided

by the cluster size.

f1 = |D| (4.5)

f2 =
|U |
|N | (4.6)

where |D| is the number of days, |U | the number of users, and |N | the number of

photos in the cluster. Typically, objects such as landmarks are photographed by

many people throughout the year; an event on the other hand usually takes place

only at one or two days and is covered by fewer users. Note that we only consider

clusters with N > 4 here. We manually labeled a ground truth of about 700 clusters

4.4. Labeling Clusters 100

with the class labels “object”, “event”, and “none”. See Figure 4.7 for an example

of each class. We then trained an individual ID3 decision tree [Quinlan, 1986] for

the classes “object” and “event” on half of the labeled data and used the other half

for validation. The task in training and testing was to discriminate the target class

(“object” or “event”) against all other classes. Cross-validated over 10 random data

partitions, this simple classifier was able to achieve 88% precision for objects and

94% for events with a standard deviation of 0.07% and 0.04%, respectively. (In fact,

due to the only two features considered we deal here rather with a decision stump

than with a decision tree.)

4.4.2 Linking to Wikipedia

Having the clusters classified into objects and events, the next processing layer

intends to add more descriptive labels. The goal is to not only label the clusters

with the most dominant words, but also to automatically link them to content

on the Internet, such as corresponding Wikipedia articles. Such a solution allows

auto-annotation of unlabeled images, even down to outlining object-parts using the

information from other pictures of the same entity. A recognition service building

upon our labeled database could then match the query to the corresponding database

entry and return the assigned Wikipedia content to the user. Such systems have been

proposed before (e.g . [Paletta et al., 2006; Quack et al., 2008]), but the automatic

collection of the database from user-generated content has not been addressed yet.

The proposed approach first finds relevant word combinations from the text asso-

ciated with each cluster using a frequent itemset mining algorithm. The resulting

frequent combinations are then used to query Wikipedia in a second step. An image

based matching step finally verifies that the links are indeed correct.

Frequent Labels

Flickr and similar community photo collections provide us with text associated to

photos. However, the text is often noisy, and not all images are labeled. Further-

more, if we want to use the text to find out more about the object by querying

Internet search engines, we need to create queries from the raw tags. Any combi-

nation of words from the text could be the “correct” query. However, finding and

trying all possible combinations would mean considering 2N combinations of words,

where N can easily be in the hundreds. We therefore resort to frequent itemset min-

ing (see Chapter 2.4) to find the most frequent combinations of words efficiently.

Those can serve both as labels for the objects and as query input for the next stage.

In our setting, the text associated with each photo (tags, caption, titles, etc.) gen-

erates a transaction, and the database consists of the set of photos in a cluster.

4.4. Labeling Clusters 101

We use an implementation [Borgelt, 2005] of the FP-Growth algorithm to mine the

frequent itemsets for each cluster, using a minimal support threshold of 0.15 (i.e.

15%). In order to ensure scalability, only the top 15 itemsets per cluster are kept.

The advantage of using itemset mining over other probabilistic method is its speed

and scalability. Tens of thousands of word combinations can be processed in frac-

tions of seconds. Furthermore, mining variants such as maximal or closed frequent

itemsets, as well as additional statistical tests on the sets, offer further opportunities

for optimization (see Chapter 2.4). For instance, maximal frequent itemsets (item-

sets with no frequent superset) are especially useful for human-readable labels on

clusters, since their subsets are not listed as additional labels.

Querying Wikipedia and Link Verification

We use each frequent itemset mined in the previous section to submit a query to

an Internet search engine. More specifically, we query Google (www.google.com),

limiting the search to wikipedia.org. By doing so, the search covers Wikipedia in

all available languages, so terms in different languages can be handled automatically.

For each result list, the top 8 results are kept. Note that in the worst case, this

generates 15 ∗ 8 = 120 possible URLs per cluster. We keep a score for each page,

which counts how often the same page was retrieved using different queries. Next,

we crawl each of the URLs and parse the corresponding Wikipedia page for images.

The idea is now to use the Wikipedia content to verify the proposed linking between

the cluster and the Wikipedia page. Chances are high, that our clusters contain

some images taken from similar viewpoints as the ones used in Wikipedia. Thus, we

extract features from the Wikipedia images and try to match them to all images in

the cluster using the same method as described in Section 4.3.2. If we find a matching

image, the proposed link is kept, otherwise it is rejected. Figure 4.8 visualizes the

individual steps in linking clusters to Wikipedia content. The tags for the cluster

(a) are mined to create frequent itemsets (b). Note how the proximity to the Louvre

introduces noisy words such as “museum”, and how the expression “arc du triomphe”

could refer also to the other, larger Arc Du Triomphe in Paris. The frequent itemsets

(b) are fed as queries to Google, and the candidate URLs (c) are retrieved. The

URLs are ranked according to how many queries had the corresponding URL in

their result list. For each URL, the HTML of the corresponding Wikipedia page (d)

is parsed to extract images. The images contained in the page are downloaded and

matched back to the images in the cluster. Figure 4.8(e) shows the best match from

the cluster with the image from the Wikipedia article (d). If such a match can be

found, the corresponding Wikipedia URL is selected as verified annotation (f).

4.5. Object-level Auto-Annotation 102

museum

museum louvre

carrousel

carrousel triomphe

carrousel triomphe arc

carrousel triomphe arc du

carrousel triomphe du

carrousel arc

carrousel arc du

carrousel du

triomphe

triomphe arc

triomphe arc du

triomphe du

arc

arc du

http://en.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca.

http://en.wikipedia.org/wiki/Axe_historique

http://fr.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://en.wikipedia.org/wiki/Quadriga

http://hu.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://de.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://nl.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://it.wikipedia.org/wiki/Arc_de_Triomphe_du_Ca...

http://en.wikipedia.org/wiki/Triumphal_arch

(c)

(d)

(b)(a)

http://en.wikipedia.org/wiki/Arc_de_Triomphe_du_Carrousel

(e)

(f)

Figure 4.8: Matching clusters to Wikipedia articles. The text for the photos in a

cluster (a) is mined for frequent word combinations (b), which are used to search

Wikipedia for candidate URLs (c). Each image of an article (d) is in return matched

to the images in the cluster. If a correct match (e) can be found, the candidate link

is selected (f).

4.5 Object-level Auto-Annotation

Using the data that was collected during the mining process, we can now annotate

novel images and even refine the annotations for database images in several ways:

• Auto-tagging with most confident tags per cluster.

• Assigning related Wikipedia articles to images.

• Placing images (without geotags) on a map.

• Object-level annotation with bounding boxes around the objects.

In the following subsection we describe how we estimate bounding boxes for objects

to achieve object-level annotations.

4.5. Object-level Auto-Annotation 103

4.5.1 Estimating Bounding Boxes for Objects

Each of the mined object clusters was created by clustering images based on their

pairwise distances as described in Section 4.3.2. The pairwise distances were calcu-

lated based on the number of (inlying) local feature matches for the image pairs.

In other words, each image in a cluster matches to several other images showing

the same object. We can now use these multiple cross-matches between images and

derive an object-specific feature confidence value. In spirit this is similar to the

feature confidence values calculated in Section 3.3, but for specific objects instead

of object classes. A bounding box can then simply be estimated around the most

confident features.

More specifically, the object-specific confidence value for feature f in image i is

simply calculated as the number of inlying feature matches stemming from all other

images:

co
if = ‖ ∀ f | f ∈ Iij ‖ j = 1 . . . N o (4.7)

where f indexes the features in image i, and N o is the number of images in the

current object cluster o.

The estimation of the bounding box is based on a threshold on that confidence value,

where the threshold toi for object o in image i is defined as

toi = min

(
tmin, α ∗

∑Mi

f=1 co
if

Mi

)
, Mi = ‖ f | co

if > 0 ‖ (4.8)

where tmin and α are parameters with typical values tmin = 2, α = 1
3
. The bound-

ing box is drawn around all features with confidence higher than toi , in other words

around all features that have a confidence higher than a fraction α of the mean con-

fidence value. Examples of the resulting confidence values and estimated bounding

boxes are shown in Figures 4.9 and 4.10. The colors reflect the confidence value, the

higher the value the brighter the color. In most cases, features which are selected

as confident are very well located on the objects with few outliers. The occasional

outliers typically receive a substantially lower vote. Thus, the simple bounding box

estimation based on a threshold on the vote is sufficiently precise in most cases.

Note, that a more sophisticated localization of a bounding box by using a method

such as Hough voting [Leibe et al., 2008; Lowe, 1999] is not straightforward here:

since we don’t have training images of the objects, we don’t know its extent and

the location of features in relation to its center. Learning such a representation

automatically from the mined data is left as future work.

These bounding boxes do not only allow object-level annotation, they can also im-

prove indexing of features for the corresponding objects: only the features lying

within the bounding boxes need to be considered for indexing. This will lower the

signal-to-noise ratio in an index built on top of the mined data.

4.5. Object-level Auto-Annotation 104

Figure 4.9: Object-specific feature confidence values and bounding boxes. Part I:

St. Peters Basilica, Rome.

4.5. Object-level Auto-Annotation 105

Figure 4.10: Object-specific feature confidence values and bounding boxes. Part

II: various examples of Paris sights).

4.6. Experiments and Results 106

Images 222’757

Size Metadata 1.1 GB

Size Features 111 GB

Images assigned to clusters 73’236

Verified Wikipedia Links 861

Images in clusters linked to Wikipedia articles 15670

Distances computed 217’330’144

Distances <∞ 751’457

Table 4.4: Dataset statistics

4.6 Experiments and Results

In the following, we present results on the whole dataset collected to this date,

stemming from the 70′000 geographic tiles that were inspected by our algorithm. We

first give an overview over the dataset, followed by subsections discussing the results

of the individual processing layers. Table 4.4 summarizes the dataset statistics.

In total over 220′000 images were downloaded from Flickr, their visual features

amounting to 111 GB, and their metadata (tags, geotags, EXIF data etc.) to 1.1GB.

Over 200 million pairwise distances had to be computed, less than 1 million was

smaller than infinity. (Note that without the geographic tiling, we would have had

to calculate over 20 billion pairwise similarities). In the end, a little over 73′000

photos could be assigned to a cluster.

4.6.1 Clusters

Here, we present results for different types of clustering. We start with a specific

example to give an impression of the results we found. Figure 4.11 shows examples

from the area around the Pantheon in Rome, and Table 4.5 summarizes numerical

data for this example. The corresponding tile is among those with the largest number

of elements, containing 2′250 images (several tiles overlap at this location; we report

the numbers for the dominant one). It is well visible how the clustering splits the

data into several semantically separate objects and contexts. For example, indoor

(a) and frontal outdoor views (b) of the Pantheon are found as separate entities.

Both contain a large number of photos: 546 and 481, respectively. Smaller clusters

describe more specific elements, such as the view from the Pantheon onto the piazza

(e), the obelisk situated behind the Pantheon (c), and even the tomb of Victor

Emmanuel II (d) inside the Pantheon. Calculating the mean of the photo locations

in each cluster allows us to place the cluster on a map. Clearly, the locations of the

different clusters are estimated very close to the true positions of the corresponding

entities. The clusters shown in this figure were obtained using single-link clustering.

4.6. Experiments and Results 107

(a)

546

(b)

481

(c)

32

(e)

31

(d)

7

Figure 4.11: Clusters found around the Pantheon and the number of photos con-

tained in each. Note the automatic separation into indoor (a), outdoor (b), and

panorama views (e), and the discovery of separate objects (c,d). Mean locations of

the photos are shown on the map. (e) is estimated at about the same position as

(b) and is therefore not drawn on the map.

Note how especially for clusters (a), (b), and (c), this allows us to merge a wide

variety of views of the same object, since only the closest matching pair has to be

connected by a distance smaller than the threshold. In total 27 clusters were found

in this area, with a mean size of 75 photos. We evaluate clustering accuracy in

terms of the cluster precision, i.e. the number of correct images divided by the total

number of images in the cluster. As “correct”, we count every image which contains

the object the cluster refers to. If there are special contexts, such as an indoor

view for an object, only those (e.g . indoor views) are counted as correct. Given

that definition, the mean precision of the 10 largest clusters is over 98%. Note that

since we deal with an unsupervised mining problem, we cannot give reliable results

for recall. Qualitatively spoken, however, recall values will not be as impressive,

4.6. Experiments and Results 108

Images in tile 2250

Clusters 27

Cluster mean size 75

Cluster max size 546

Cluster min size 4

Mean precision 10 largest clusters 98%

Table 4.5: Summary of Pantheon Results

since it may happen that photos of one object are spread over multiple clusters.

Furthermore, it would be unrealistic to expect exhaustive recall from un-controlled

databases such as Flickr.

For comparison, we also ran a clustering based purely on text, using all text sim-

ilarities between the photos in this area. Depending on the parameters, we were

only able to get 1-3 clusters with a precision of about 60%. Not only were we not

able to discriminate between indoor and outdoor views based on text features, the

clusters also contained many outliers which did not contain the relevant object at

all. For instance, only 116 of the photos in the area carry tags such as “inside” or

“interior”, making a discrimination based on text very difficult. In contrast, cluster

(a) in Figure 4.11 contains over 500 photos of the inside of the Pantheon. (The word

“Pantheon” appears with 1′245 photos). Also in comparison to [Simon et al., 2007],

we are able to retrieve larger clusters while maintaining high precision.

To examine the results of the different types of visual clustering further, consider

another example shown in Figure 4.12. It depicts the area around the Louvre in

Paris. Figure 4.12(a) shows the estimated mean positions of single-link clusters. In

total, the area is covered by 176 clusters; the largest cluster contains 418 elements,

the mean size is 17 elements. One of the clusters (marked in yellow) is shown

in Figure 4.12(b). Here, each pin represents the location of one photo. Note how

strongly the positions vary. Some examples of the clusters’ contents are shown in the

column next to the map, again visualizing the mentioned variability in viewpoints.

In contrast, Figure 4.12(c) shows the complete-link clusters for the same area. The

more restrictive clustering criterion results in smaller and more compact clusters;

the mean size is only 4 elements, and the maximum is 5. 207 complete-link clusters

were found for this region; again one cluster is selected and its elements are shown

in Figure 4.12(d). Their locations are more compact, and the contents of the cluster

have less variability, as the examples next to the map demonstrate. Also note again

the grid overlaid on the maps in (a) and (c), which shows the tiles we used to retrieve

photos by their geotags (again, 4 cells make up a tile).

The results for average link clustering turned out to be quite similar to the ones

obtained with complete-link clustering and are not shown here.

4.6. Experiments and Results 109

(a) (b)

(c) (d)

Figure 4.12: Clusters around the Louvre: (a) shows single-link clusters, the photos

of the cluster marked in yellow are located as shown in (b). (c) shows complete-link

clusters for the same area, again with the photos of the yellow cluster in (d). (Only

clusters with at least 4 elements are shown).

4.6.2 Objects and Events

The classifier described in Section 4.4.1 allows us not only to detect objects, but

sometimes even events. Applying the ID3-tree to the entire dataset resulted in the

following distribution of objects and events: of 6′511 clusters (single-link), 4′315

were classified as objects, 719 as events. Visual inspection on randomly picked

clusters showed that the classification precision is very accurate, similar to the results

obtained on the validation set in Section 4.4.1. Figure 4.13 shows some examples of

event clusters. The first cluster contains images from 3 different events in a series

taking place on different days (”Oxford Geek nights”) and was recognized due to

the same location it took place in. The second (a movie premiere in Italy) and

third event (an exhibition in a gallery in Paris) were both covered by two different

4.6. Experiments and Results 110

Figure 4.13: Typical events mined by our methods.

photographers. The last line represents the majority of events: an event from a

single day, covered by only one photographer.

An example where our simple classification into objects and events fails, is shown

in Figure 4.14. The example shows a window located in the Vatican in Rome,

from which the pope addresses the people. The clustering identified this particular

window, and the labels refer to the pope. However, due to the distribution over

several dates in several years, the cluster was classified as object and not as event.

However, in this particular case the classification is hard to define: is it the place,

the event, or the person that define the clusters’ semantics?

Objects and event clusters can also be visualized on a map, as shown in Figure 4.15.

Different classes of clusters are represented by different pin colors, the pin location

is set at the mean position of the geo-tags of the images in the cluster. The exam-

ple shows the area around the Sacre Coeur in Paris. Again, most of the clusters

correspond to objects, only a few of them are events.

The smaller number of event clusters can be explained by two factors: relying mostly

on visual cues, we can only detect events which take place in an environment where

4.6. Experiments and Results 111

Figure 4.14: Misclassification (?) example. The Pope’s window in Rome, la-

beled as object. The textual labels derived from the tags are xvi, popebenedictxvi,

benedict, stpeters, pope

the background matches between photos. Second, it seems that so far, in general

fewer people geotag photos of events.

4.6.3 Multimodal Linking to Wikipedia

Figure 4.16 shows some typical results for the multimodal linking to Wikipedia.

Each result is represented by a pair of images: the left image was extracted from

Wikipedia, the one on the right is its closest match in the cluster (there are typically

many more matching images in each cluster.) Below each pair, we provide the URL

of the mined Wikipedia article, followed by the cluster statistics. For each cluster,

we report the number of photos, the number of users who took them, and the number

of different days the photos were taken at. We also report the precision, obtained

again by manual inspection as described above. In general the precision is very

high, ranging between 93% and 99%. The precision values are also summarized in

Figure 4.17.

Especially very well known landmarks, such as the Sacre Coeur (Figure 4.16 1), the

Colosseum (4,5), or the Trevi fountain (14) are covered by a large number of photos

with very few false positives. Lesser known objects, such as the Radcliffe Camera

(15) have fewer images and are thus also more vulnerable to a few false positives.

Staying with the Radcliffe Camera (15), note how multiple matching Wikipedia

articles have been verified for the object. The same effect can be observed in example

(13) or example (14), where articles in multiple languages were retrieved. Some

matches are truly amazing, for instance example (5), where a painting matched to a

photo of the Colosseum, or (12) and (13) with strong clutter and viewpoint change.

While most examples in Figure 4.16 refer to rather well known landmarks, some rare

gems were mined, too. A few examples are shown in Figure 4.18. Example (1) does

not only link to the article Sainte Chapelle, but also to an article about stained glass;

similarly Mona Lisa (2) is linked to a specific article and a more general one about

4.6. Experiments and Results 112

Figure 4.15: Object and event clusters on a map. Blue pins represent events,

green pins objects. Red pins could not be classified as either one. Sample images of

two selected clusters are shown below the map.

Leonardo Da Vinci. In example (3), both the context “Forum Romanum” and the

specific “Temple of Vesta” could be verified. Examples of smaller, even lesser known

entities are shown in (4,5,6), note the maypole on Viktualienmarkt in Munich in (6):

one of the articles explains the location, the other the tradition. Destinations with

fewer tourists, such as Tallinn and Zurich (7,8) tend to have less photo coverage and

also less content on Wikipedia. Nevertheless, some locations could be identified by

our mining pipeline (7,8). Finally, example (9) is a lucky shot, where an event could

be linked to a person and verified. By coincidence Wikipedia contains an image of

an event (Jules Verne Adventures Film Festival, April 2007), which is also covered

on Flickr and labeled with the attending actors’ name. Clearly, only larger events

are covered in Wikipedia, so that the chance of detecting a correct link for any

event is rather small. Furthermore, homography based matching between images is

well-suited for rigid objects and scenes, but less suited for events. Future work could

4.6. Experiments and Results 113

(2) http://en.wikipedia.org/wiki/Moulin_Rouge

66 Elements, 39 users, 50 days. Precision: 100%

(3) http://en.wikipedia.org/wiki/Temple_of_Apollo_Sosianus

33 elements, 22 users, 33 days. Precision: 98.4%

(7) http://en.wikipedia.org/wiki/Panth%C3%A9on,_Paris

48 elements, 31 users, 37 days. Precision: 98%
(12) http://en.wikipedia.org/wiki/Old_Town_Square_(Prague)

262 elements, 122 users, 195 days. Precision: 98%.

(13)http://en.wikipedia.org/wiki/Monument_to_Vittorio_Emanuele_II

 http://it.wikipedia.org/wiki/Vittorio_Emanuele_II_di_Savoia

 http://it.wikipedia.org/wiki/Monumento_a_Vittorio_Emanuele_II

336 elements, 162 users, 249 days. Precision: 99%

(4) http://en.wikipedia.org/wiki/Colosseum

 http://no.wikipedia.org/wiki/Colosseum

 http://sv.wikipedia.org/wiki/Colosseum

582 elements, 190 users, 252 days. Precision: 100%

(5) See (4), matchted to the same cluster.

(1) http://en.wikipedia.org/wiki/Basilica_of_the_Sacr%C3%A9_C%C5%93ur

426 Elements, 233 users, 287 days. Precision: 100%

(9) http://en.wikipedia.org/wiki/Tour_Montparnasse

40 elements, 10 users, 11 days. Precision: 100%

(10) http://en.wikipedia.org/wiki/Campo_dei_Miracoli

 http://it.wikipedia.org/wiki/Battistero_di_Pisa

33 elements, 24 users, 21 days. Precision: 94%

(8) http://en.wikipedia.org/wiki/Notre_Dame_de_Paris

588 elements, 287 users, 334 days. Precision: 100%

(6) http://en.wikipedia.org/wiki/Arc_de_Triomphe

567 elements, 233 users, 298 days. Precision: 98%
(11) http://en.wikipedia.org/wiki/Dancing_House

105 elements, 65 users, 87 days. Precision: 99.9%

(14) http://en.wikipedia.org/wiki/Trevi_Fountain

 http://it.wikipedia.org/wiki/Fontana_di_Trevi

 http://de.wikipedia.org/wiki/Fontana_di_Trevi

829 elements, 363 users, 432 days. Precision: 98%

(15) http://en.wikipedia.org/wiki/Radcliffe_Camera

 http://en.wikipedia.org/wiki/Bodleian_Library

41 elements, 31 users, 34 days. Precision: 93%

Figure 4.16: A world tour with Flickr and Wikipedia. The left image in each pair

stems from Wikipedia, the right image is the best match in a mined cluster. The

Wikipedia links which could be verified this way are reported below the images,

together with the cluster statistics. Note the high precision scores and the size of

some clusters. (See text for a detailed discussion).

4.6. Experiments and Results 114

Figure 4.17: Precision within selected clusters.

thus extend the system by classifying event scenes (wedding, concert, etc.) based

on a bag-of-features approach [Bosch et al., 2006] and label it using the textual

meta-data rather than linking it to Wikipedia.

Table 4.4 contains statistics for the Wikipedia linking results. In total, 861 unique

Wikipedia articles were verified by matching their images to our clusters as described

above. The precision of this assignment was about 94%, i.e. 94% of the articles

referred to a cluster which contained images of the article’s correct subject. These

articles covered 423 single-link clusters with 15′670 images. That is, about a quarter

of all images in clusters could be related to a Wikipedia article.

Querying Wikipedia with the queries given by the frequent itemsets had resulted

in over 20′000 URLs as linking candidates and in more than twice as many images

parsed from the articles. This demonstrates how effective our method is in mining

relevant links out of a vast amount of irrelevant data.

4.6. Experiments and Results 115

(2) http://en.wikipedia.org/wiki/Leonardo_da_Vinci

 http://en.wikipedia.org/wiki/Lisa_del_Giocondo

14 elements, 12 users, 12 days . Precision: 100%

(3) http://en.wikipedia.org/wiki/Roman_Forum

 http://en.wikipedia.org/wiki/Temple_of_Vesta

 7 elements, 7 users, 7 days Precision: 100%

(8) http://en.wikipedia.org/wiki/Tallinn

http://de.wikipedia.org/wiki/Tallinn

16 elements, 9 users, 16 days. Precision: 100%

(9) http://en.wikipedia.org/wiki/Zachary_Quinto

7 elements, 1 users, 1 days . Precision: 100.

(4) http://en.wikipedia.org/wiki/Lennon_Wall

7 elements, 7 users, 7 days. Precision: 100%.
(7) http://de.wikipedia.org/wiki/Altstadt_(Stadt_Z%C3%BCrich)

16 elements, 2 users, 11 days. Precision: 100%.

(1) http://en.wikipedia.org/wiki/Sainte-Chapelle

 http://en.wikipedia.org/wiki/Stained_glass

198 elements, 70 users, 70 days. Precision: 99%

(5) http://en.wikipedia.org/wiki/Rathaus-Glockenspiel

8 elements, 7 users, 7 days. Precsion: 100%.

(6) http://en.wikipedia.org/wiki/Viktualienmarkt

 http://en.wikipedia.org/wiki/Maypole

8 elements, 7 users, 7 days. Precison: 100%.

Figure 4.18: Additional, surprising mining results. See text for a discussion.

4.6.4 Auto-annotation

Based on the object-specific feature confidence values derived in Section 4.5 we can

estimate bounding boxes for mined objects, both for the existing database images

but also for novel “query” images. We first show some results for object-level an-

notation of the mined database images. Combining the estimated bounding boxes

and the information obtained from Wikipedia linking, we can create very appealing

annotation displays. To that end, the links and tags are “attached” to the estimated

bounding boxes. This is shown with a few examples in Figure 4.20.

Figure 4.19: Auto-annotation of novel images using the mined clusters.

4.6. Experiments and Results 116

http://en.wikipedia.org/wiki/St._Peter’s_Basilica

http://en.wikipedia.org/wiki/Notre_Dame_de_Pari

http://en.wikipedia.org/wiki/Basilica_di_Santa_Maria_della_Salute

http://en.wikipedia.org/wiki/Campo_dei_Miracoli

http://en.wikipedia.org/wiki/Astronomical_clock

http://it.wikipedia.org/wiki/Teatro_di_Marcello

http://de.wikipedia.org/wiki/Invalidendom

Figure 4.20: Results of automatic object-level annotation with bounding boxes.

4.6. Experiments and Results 117

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Figure 4.21: ROC curves for automatically created bounding boxes on mined data.

To evaluate the quality of the object-level auto-annotation we created a groundtruth

set of 320 images labeled with bounding boxes. More specifically, the groundtruth

was created as follows: from the object-clusters that could be linked to a Wikipedia

article, images were drawn at random. Each image and the corresponding Wikipedia

URL were shown to an annotating person, who was given the task to label the object

the Wikipedia article was referring to with a bounding box.

This annotated groundtruth was then compared to the bounding boxes detected by

our system. A bounding box was counted as correct detection (true positive), if the

intersection-over-union with the annotation was greater than 0.5. All other bounding

boxes returned by our system were counted as false positives. This evaluation is the

same that is commonly used in object class detection. Figure 4.21 shows ROC

curves for that task. The curves were generated by varying through the range of

the object-specific feature confidence thresholds the bounding boxes were estimated

with. The overall recognition rate reaches 70%. This level is about the same as the

values in retrieval tasks for specific objects such as [Philbin et al., 2007]. However,

the labelling relies purely on automatically detected cross-matches between clustered

images, i.e. the system needs to decide automatically which fragments of a scene

belong to the mined object and which fragments are part of the (sourrounding)

background. Often, this discrimination is not easy, sometimes even hardly possible.

Furthermore, sometimes the annotation refers to a larger scene, sometimes only to a

specific object within a scene. Another source of error are clusters with few images

which do not allow the calculation of a reliable feature confidence value, due to the

lack of matching features. This is illustrated in Figure 4.22 (top), where the mean

intersection over union (IOU) value for true positive detections is plotted over the

4.6. Experiments and Results 118

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Size

M
ea

n
IO

U

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Min Cluster size 0
Min Cluster size 100
Min Cluster size 500

Figure 4.22: Top: Mean intersection over union value (IOU) for detected bounding

boxes at different minimal cluster sizes. Bottom: ROC curves by cluster size.

4.6. Experiments and Results 119

cluster size for an object. Clearly, the IOU value is the higher the larger the cluster

get. Figure 4.22 (bottom) shows corresponding ROC curves, i.e. when considering

only detections “created” from clusters with the given minimal size. As expected,

the ratio of true positive detections increases at the cost of recall the larger the

minimal cluster size is chosen.

Selected true positive detection examples are shown in Figure 4.23, Figure 4.24 shows

examples of false detections. It is worth noting, that most false positive detections

are under-estimations of the true bounding-boxes. This is mostly due to lack of

feature coverage. In total, 17′485 different photos could automatically be labeled

with at least one bounding box. Note, that this refers only to photos which could

also be linked to a Wikipedia article beforehand. With the database we built in

this paper, annotation is not limited to the images that are already contained in the

mined database. Auto-annotation of unlabeled “query” images with geo-location,

object level bounding-box annotation, and corresponding Wikipedia article becomes

also feasible. In a real world system, users could simply select the rough geographic

area (e.g . by drawing a bounding box around Paris on the map), and photos would

automatically be placed at their exact position and annotated with bounding boxes

and Wikipedia articles. To demonstrate this capability, we downloaded 6 sample

query images of sights in Paris from Google, see Figure 4.19. These are images

which are neither present on Flickr, nor on Wikipedia. We load all clusters which

we found in the Paris area (the full area as given in Table 4.2) and which could be

assigned to a Wikipedia article, as described in the previous steps. These conditions

hold for 167 clusters. Now, we simply match the query images to the clusters and

record the best-matching image and cluster. This process only takes a few minutes,

and the result is shown in Figure 4.19. The result location is selected as the mean

location of all images in the matching cluster. Note the precision of the placement

in the magnified map elements. All images are also linked to the correct Wikipedia

article in the spirit of Figures 4.16 and 4.18. Note how similar the Arc de Triomphe

and Arc de Triomphe du Carousel are (first and second image in the left column).

Also note how close the two objects Arc de Triomphe du Carousel and the Louvre

Pyramid are (second and third map in the left column). Our method is able to

handle these uncertainties robustly and to discriminate between similar objects at

different locations and different objects at the same location. In contrast, a direct

matching of query images to Wikipedia images would not be possible in most cases,

since the viewpoint changes might be too large. The number of images in our clusters

(connected by a single-link clustering method) literally bridges the gap between the

un-annotated query image and the Wikipedia image via the clusters created from

Flickr data. Combining this method with scalable indexing [Philbin et al., 2007] for

local features will allow for auto-annotation of many holiday snaps within seconds.

4.6. Experiments and Results 120

Figure 4.23: True positive detection examples. Yellow (dashed) line: annotation.

Green (solid) line: detection.

4.6. Experiments and Results 121

(a) (b)

(c) (d) (e)

(f) (g)

Figure 4.24: False positive detection examples. Yellow line: annotation. Red line: de-

tection. First row: False positives due to mismatch with annotation. In (a) the annotated

Wikipedia article is ’St. Mark’s Campanile’ in (b) Viktualienmarkt. In both cases the

learnt object-levlel annotation refers to another aspect at the same location. (St. Mark’s

Square and Maypole, respectively). Second row: particularly challenging examples. In

(c) the groundtruth annotation for Colloseum includes the stone in the foreground, (d)

extremely cluttered scene and small object (Prague Astronomical Clock), (e) difficulties

of separating fore- and background, if images in cluster are taken from same viewpoint.

(f) and (g): typical under-estimation of bounding box size due to lack of feature coverage.

4.7. Related Work 122

4.7 Related Work

Since the mining method proposed in this chapter covers an entire, multi-modal

processing pipeline, it touches on a large variety of previous publications. Work-

ing with data from community photo collections has received increasing attention

lately [Aurnhammer et al., 2006; Jaffe et al., 2006; Lew et al., 2006]. However, most

of those approaches are based either on text [Jaffe et al., 2006] or only global visual

features. The local visual features which are used in this work, however, allow to

find very good and extremely accurate matches between the depicted objects even

under significant changes in viewpoint, imaging conditions, scale, lighting, clutter,

noise, and partial occlusion. A similar approach would not be possible using global

measures such as color or texture histograms. Philbin and Zisserman [Philbin et al.,

2007] also worked with local features and multiple view geometry on a database of

landmark buildings obtained from Flickr. The main goal of that work was to derive

a scalable indexing method for local visual features, the database was retrieved and

annotated manually. The work most similar to ours is probably [Simon et al., 2007;

Snavely et al., 2006]. Here, the authors also proposed clustering images from commu-

nity photo collections using multi-view geometry based matching between images.

The goal was to derive canonical views for certain landmarks and to use those as en-

try points for browsing. Initial image collections were retrieved by querying photo

collections with known keywords such as “Rome”, “Pantheon”, etc. As we will

demonstrate, our fully unsupervised approach based on geographic tiling is not only

more flexible, but also more scalable. (The dataset used in [Simon et al., 2007] con-

tained 20′000 photos, while ours is one order of magnitude larger). Furthermore, we

add several layers of processing which extract semantic information, such as clas-

sification into objects and events, and which automatically include other content

sources such as Wikipedia for unsupervised labeling of objects. To the best of our

knowledge, this work is the first to propose this kind of pipeline, taking as an input

only a geographic tiling of the world and resulting in an output of automatically

mined landmark objects, together with their semantics in the form of automatically

created links to Wikipedia.

Similar in scale are the experiments conducted in the recent work [Hays and Efros,

2008]. Here, the geographic location an image was taken at is estimated by compar-

ing it to a huge database of images downloaded from Flickr. The overall objective

is to find near duplicate images of the same scene very efficiently. To that end, the

authors process 6 million geo-referenced images to create a reference database with

good coverage of the earth. The images are encoded using several global feature

types (tiny images [Torralba et al., 2008], GIST [Oliva and Torralba, 2001], color

histograms, etc.). Estimating the location the picture was taken at is now simply

done by finding the nearest neighbour(s) in the database. This works astonishingly

well, reaching absolut recognition rates of up to 16% for locating an unseen test-

4.8. Discussion and Conclusions 123

image within 200km of its correct location. However, these recognition rates are

not sufficient for the applications we have in mind. The method also don’t allow

precise description of objects in the images, as with our system, which builds on

local features instead of global ones. In summary, [Hays and Efros, 2008] is a work

quite complementary to ours.

Finally another approach with the focus on reconstructing 3D models from images

collected in community photo collections similar to [Simon et al., 2007], was just

recently proposed in [Li et al., 2008b].

4.8 Discussion and Conclusions

We have presented a fully unsupervised mining pipeline for community photo collec-

tions. The sole input is a grid of tiles on a world map. The output is a database of

mined objects and events, many of them labeled with an automatically created and

verified link to Wikipedia. The pipeline chains processing steps of several modalities

in a highly effective way. The basis is a pairwise similarity calculation with local

visual features and homography-based geometric verification for each tile. Hierarchi-

cal clustering was demonstrated to be a very effective method to extract clusters of

the same entities in different contexts (indoor, outdoor, etc.). We observed that the

clustering step on visual data is far more reliable than on text labels. A simple tree-

based classifier on the metadata of photos was introduced to discriminate between

object an event clusters. Itemset mining on the text of the clusters created with

visual features was proposed to mine frequent word combinations per cluster. Those

were used to search Wikipedia for potentially relevant articles. The relevance was

verified by matching images from the Wikipedia articles back to the mined clusters.

Both the clustering and linking to Wikipedia showed high precision. Finally, in a

last step we demonstrated how the database can be used to auto-annotate unlabeled

images without geotags down to object-level annotation of objects with bounding

boxes, assignment of geographi location, textual tags and related content.

Besides the effective mining pipeline proposed in the paper, we also carried out

one of the largest experiments with local visual features on data from community

photo collections by processing over 200′000 photos. The results of this large-scale

experiment are very encouraging and open a wealth of novel research opportunities.

They include in particular improved auto-annotation of data from multimodal in-

formation sources, processing at even larger scales by integrating scalabale feature

matching methods and distributed processing, and more precise object level anno-

tations. Combinations with complementary works such as [Hays and Efros, 2008;

Simon et al., 2007; Snavely et al., 2006] would allow for interesting applications.

Finally, integrating mining methods and scalable retrieval, in combination with con-

4.8. Discussion and Conclusions 124

tinually growing amounts of available data will probably lead to the creation of very

exciting auto-annotation and retrieval systems in the coming years.

5
Retrieval in a Multimodal Context

In the preceding chapters we looked into mining visual data at several levels. We

mined basic feature configurations in Chapter 3, and in Chapter 4 we proposed a

system which automatically mines objects and events from community photo col-

lections. In this chapter, we access the databases from the retrieval side. Stepping

one more step closer to a fully functional object recognition system, we look into

the retrieval process and the user-interaction with the system, including the user

interface.

Retrieval and mining are closely related topics. Mining data from sources such as

the Web, allows us to create indices and entry points to access the data. If we are

able to detect occurrences of certain object classes (Chapter 3), the database could

be accessed by searching for the corresponding class names. Mining specific objects

and their descriptions from the Internet (Chapter 4) allows us to access the index

either with text search to find images depicting the object, or with a query image

of the object, to learn more about it, for instance by reading a Wikipedia article.

Such a capability has a wealth of applications, especially for the rising number of

camera-equipped mobile phones in use, and the growing amount of digital imagery

being shared on the Web.

The Web and the use of mobile devices for retrieval define a multimodal context,

which should be exploited by retrieval applications. We exploited the multi-modality

of the data in community photo collections in the previous chapter to make the

connection between an object and related Internet content. This allows retrieval

with one modality, requesting content for another as result. For instance, taking

a picture of a building with a mobile phone returns related Wikipedia pages. The

multimodal context can also be used to support the retrieval process. For example,

the geographic position of the user making a request from a mobile device can be

used to restrict the search space to objects within her vicinity.

This chapter explores such applications by discussing several prototype applications

that were implemented in the course of this thesis. The chapter is organized as fol-

lows. In Section 5.1 we look shortly into the history of image retrieval. In Section 5.2

5.1. The Query by Example Paradigm Revisited 126

we discuss retrieval applications for mobile devices, and the potential impact these

devices will have as an interface in the near future. This is followed by an eval-

uation of several prototype applications for mobile devices, including a city-guide

and a slide-tagging application for meeting rooms. In Section 5.3 we focus on ap-

plications for the Web. Finally, in Section 5.4 we propose an approach to locate

and extract text in natural scenes, as an additional means to support multimodal

retrieval in visual data. The chapter concludes with a discussion of related works

and a summary of the results.

5.1 The Query by Example Paradigm Revisited

Understanding and interpreting the content of an image is one of the fundamental

problems of computer vision research. A substantial amount of work has been carried

out in the 1990’s, trying to exploit global feature descriptors such as color, shape

and texture to build image retrieval systems. The typical usage scenario proposed

to start with an example image as a query and to use its (global) features to retrieve

similar images from a database. Similarity is typically expressed as a distance in

feature space either for a single feature type or a combination of multiple types.

Such an interaction with the system is commonly termed Query by Example (QBE).

Some of the early systems that worked according to this paradigm include the QBIC

project [Flickner et al., 1995] at IBM, BlobWorld [Carson et al., 1999], NeTra [Ma

and Manjunath, 1999], PicHunter [Cox et al., 2000] and MARS [Rui and Huang,

1999], and many others.

However, relying on an example image as a starting point for the search also arrives

with certain limitations to the system’s usefulness. After all, where would the user

get the example image from? And if he had it already, why would he want to search

for another image with similar content? QBE is typically combined with other entry

points into the retrieval process. One approach consists of initiating search with a

text retrieval on the meta-data associated with the images in the database to obtain

a set of initial sample images. The process then continues with content-based image

retrieval by selecting the sample closest to the expected result. Cortina [Quack et

al., 2004] was one of the systems which applied this solution to search a few million

images from the Web.

Other approaches are category-based browsing, or retrieval within the database, i.e.

the queries are selected from (sub-)images in the database. The latter is especially

relevant for video data, where the task consists of finding an object from a query

frame in other shots of the video. Here, the influential work by Sivic and Zisser-

man [Sivic and Zisserman, 2003] probably marks the turning point, where interest

in the community shifted from similarity retrieval to object-level retrieval and from

global image features to (visual vocabularies of) local appearance features.

5.1. The Query by Example Paradigm Revisited 127

Figure 5.1: Time required to enter a keyword query on a mobile device in relation

to query length (in characters). Figure by [Kamvar and Baluja, 2006]

Similarity retrieval and retrieval within a closed database are of interest mostly to

users in the publishing and media industry, trying to find similar data for a given

image, for instance when looking for illustrations and photos to illustrate news

articles, or archive video data for a given topic.

With the widespread availability of digital cameras, on-line photo sharing platforms,

and mobile phones with integrated cameras, the QBE concept in its “purest” form

is suddenly of relevance again: using a mobile phone, the user can “generate” an

example-image with a single click and even transmit it to a retrieval system auto-

matically. With this application the focus shifts to identifying a specific object in

the query image, rather than retrieving similar images. In other words, the main

purpose of the system is not to return more images of the same, but to identify a

specific object in the image and to return multimodal information about it. This

could ease Web search from mobile devices: instead of tedious typing of keyword

queries on small buttons, sending a picture is sufficient to start searching. Figure 5.1

shows the results from a study [Kamvar and Baluja, 2006] conducted by Google. It

shows the time a user spends typing a query on a mobile phone keypad for a given

number of characters in the query. It is quite stumbling, that the average time

spent typing amounts to roughly 40s. Beyond the limitations imposed by typing of

queries, in some cases the user may not even know the correct query to enter, e.g . for

an unknown landmark building in a foreign city. This concept, i.e. the possibility to

interact efficiently with physical objects (or “things” for that matter) and to access

digital information about them is often termed “The Internet of Things”.

The following section explores the application of object recognition in this context.

We put an emphasis on the user perspective on image and video retrieval by investi-

gating various applications, systems and user interfaces for object-level retrieval in

visual databases.

5.2. Object Recognition for Mobile Devices 128

5.2 Object Recognition for Mobile Devices

Extending the Internet to physical objects — the Internet of Things — promises

humans to live in a smart, highly networked world, which allows for a wide range of

interactions with this environment. One of the most convenient interactions is the

request for information about physical objects. For this purpose several methods

are currently being discussed. Most of them rely on some kind of unique marker

integrated in or attached to the object. Some of these markers can be analyzed

using different kinds of wireless near field communication (for instance RFID tags
[Want, 2004] or Bluetooth beacons [Fuhrmann and Harbaum, 2003]), others are vi-

sual markers and can be analyzed using cameras, for instance standard 1D-barcodes
[Adelmann et al., 2006] or their modern counterparts, the 2D codes [Rohs and

Gfeller, 2004].

A second development concerns the input devices for interaction with physical ob-

jects. In recent years mobile phones have become sophisticated multimedia com-

puters that can be used as flexible interaction devices with the user’s environment.

Besides the obvious telephone capabilities, current devices offer integrated cameras

and a wide range of additional communication channels such as Bluetooth, WLAN

and GPRS/UMTS/3G access to the Internet. People are used to the device they

own and usually carry it with them all day. Furthermore, with the phone-number, a

device is already tied to a specific person. Thus it is only natural to use the mobile

phone as a personal input device for the Internet of Things.

Indeed, some of the technologies mentioned above have already been integrated in

mobile phones, for instance barcode readers or RFID readers. The ultimate system,

however, would not rely on markers to recognize objects, but rather identify it by

their looks, i.e. using visual object recognition from a mobile phone’s camera image.

Since the large majority of mobile phones contain an integrated camera, a significant

user base can be addressed at once. With such a system, snapping a picture of an

object would be sufficient to request all the desired information on it. While this

vision is far from being reality for arbitrary types of objects, with the methods

presented in the preceding chapters we are able to recognize certain types of objects

very reliably and “hyperlink” them to digital information.

Using object recognition methods to hyperlink physical objects with the digital world

brings several advantages. For instance, certain types of objects are not well suited

to attach markers. This includes also large landmark buildings, where markers might

only be attached at few locations at the building. (such an experiment has been

attempted with the Semapedia project 1). Furthermore, a user might want to request

information from a distance, for instance for a church tower which is up to several

hundred meters away. But even if the object is close, markers can be impractical. A

1http://www.semapedia.org

5.2. Object Recognition for Mobile Devices 129

barcode or RFID attached to the label of an object displayed in the museum would

be difficult to access if the room is very crowded. Taking a picture of the item can

be done from any position where it is visible. Furthermore, consistent tagging of the

objects is often difficult to achieve. One example are outdoor advertising posters.

If a poster company wanted to “hyperlink” all their poster locations, they would

have to install an RFID or bluetooth beacon in each advertising panel or attach

a barcode to each of them, which requires a standardized system and results in

costs for installation and maintenance. Another field of application are presentation

screens in smart meeting rooms or information screens in public areas. The content

displayed on the screen is constantly changing and it would be an involved process

to add markers to all displayed content.

Using object recognition to interact with these objects requires only a database of

images. That being said, object recognition does not come without restrictions,

either. For instance, it is currently (and maybe always) impossible to discriminate

between highly similar objects, such as two slightly different versions of the same

product in a store. Furthermore, efficient indexing and searching visual features for

millions or billions of items is still a considerable research challenge. (Chapter 6 of

this thesis presents some possible methods to scale retrieval in databases of local

image features).

5.2.1 Mobile Interfaces

In this section we discuss some of the options for system architecture and user in-

teraction when designing a retrieval system for mobile devices. The options to con-

sider include the distribution of processing tasks to client or server side, or wether

a request-response or a real-time streaming interface should be offered to the user.

Many of these options depend on the processing capabilities of today’s mobile phones

and on the bandwidth available on mobile communication networks. In the follow-

ing sections we discuss some prototype applications of mobile user interfaces we

implemented.

Client-side vs. Server-side Processing

One of the first questions to consider is which tasks can or should be done on the

phone itself and which tasks are better delegated to a server-side processing system.

One extreme would be to implement a whole system including feature extraction,

database storage and database search on the mobile phone itself. This is currently

only possible for applications with small databases (a few thousand items at most,

probably) and on high-end devices due to limitations of CPU and memory. An

overview of the capabilities of currently available phones is given in Table 5.1. It

5.2. Object Recognition for Mobile Devices 130

anastacia marccain swissair bertel bell joystick

10

20

30

40

50

60

70

80

a
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
a
l
ti
m

e
 [
s
]

picture

SURF

SIFT

Figure 5.2: SIFT and SURF on a mobile Phone (Nokia 6630).

can be seen that CPU speed is a few hundred MHz at most, and only the latest and

most expensive devices have more than 100MB of RAM.

Phone Model Type Year CPU RAM GPS WiFi Camera

Nokia 6230 C 2004 ? 6 MB no no 0.3 MP

Nokia 6630 HE 2004 220 Mhz 10 MB no no 1.3 MP

Nokia N70 HE 2005 220 MHz 22 MB no no 2.0 MP

Nokia N95 HE 2007 332 MHz 128 MB yes yes 5.0 MP

Apple iPhone 3G HE 2008 412 MHz 128 MB yes yes 2.0 MP

Table 5.1: Capabilities of typical mobile phones. Type denoted as: HE (High-end

device). C (Simple consumer device).

For larger databases, one could consider moving at least the feature extraction to

the client, and sending features as query to a server. While the set of local feature

descriptors for a typical query image is usually not more compact than a compressed

image, the advantages would be distributed processing for the feature extraction,

and increased privacy, since only features instead of images are transmitted. We

thus implemented SIFT and SURF feature extraction on the Symbian [Edwards,

2004] mobile platform using platform specific C++.

5.2. Object Recognition for Mobile Devices 131

Feature extraction runtimes using SIFT and SURF for a few typical images are

shown in Figure 5.2. The implementation is a rather straightforward port of the

workstation source codes, i.e. not optimized for the mobile beyond the changes

that are required due to the architecture of the embedded platform. It can be

seen, how SURF outperforms SIFT by about the same factor as on a PC. However,

absolute runtimes are extremely high, in average more than 10s for SURF on a

typical image. In contrast, on a modern PC SURF feature extraction takes a few

hundred ms [Bay et al., 2006b]. The absolute recognition times could be reduced

by avoiding floating point operations. Only just recently client-side applications

have been proposed [Wagner et al., 2008] which allow real-time extraction of SIFT

features on client-side devices through heavy optimization.

Considering the fragmentation of the mobile phone ecosystem (e.g . operating sys-

tems, processors, etc.) and the rather low processing capabilities of even high-end

devices, a server-side approach for object recognition seems preferable. The main

challenge is now posed by transmitting the image data to the server and rendering

the response. Here, we implemented three prototype applications:

1. Single shot server-side processing with manual release

2. Continuous real-time recognition from video streams

3. Hybrid: Single shot server-side processing with automatic release

The implementation on the devices was carried out in several student projects,

detailed descriptions can be found in the respective reports [Breu and Müller, 2008;

Jecker and Knecht, 2008; Ulrich, 2006].

Single shot server-side processing with manual release

The simplest application consists of sending a single image initiated when the user

presses a button on the phone. The image is transmitted to a server, sent through

an object recognition pipeline, and the response is sent back to the phone. Often,

the response will be an URL to a web-page with information about the recognized

object. Thus, our sample application opens the phone’s internal browser and renders

the web-page for the URL. This process is shown in Figure 5.3 with screenshots from

our application. The client-side software was programmed in C++ for Symbian.

Continuous real-time recognition from video streams

A more user-friendly application than the one in the previous section would label

recognized objects continuously on the phone’s screen. In a server-side implemen-

tation of the actual object recognition pipeline, this requires sending a continuous

5.2. Object Recognition for Mobile Devices 132

Figure 5.3: Client software for the cityguide application: the user snaps a picture,

waits a few seconds, and is redirected to the corresponding Wikipedia page.

video stream to the server and detecting objects from it. Our implementation [Jecker

and Knecht, 2008] builds on available open-source packages 2 to allow MPEG video-

streaming from Symbian devices via Bluetooth or Wireless LAN to a server. We

extended the server software with a thread for object recognition. Incoming frames

are matched to the database of objects at regular time-intervals. If a match is de-

tected, the object is tracked through the subsequent frames. Tracking is done by

simply matching local features of the database object continuously (SURF features

allow this kind of real-time matching) and the coordinates of a bounding box around

the matched features are sent back to the client. Along with the bounding box, a

string with the title is transmitted. The Symbian client was extended to receive

both the bounding box and the string with the object’s name, and display them on

the screen accordingly. This is shown in Figure 5.4.

When the object is lost while tracking, the database is queried again with the incom-

ing frames, and the process above is repeated. Note, that the system is currently

limited to recognize on object in the field of view, but could easily be extended

to handle multiple recognitions. Obviously, receiving and processing many parallel

streams would put a lot of burden on a server system, too.

2http://www.movino.org/

5.2. Object Recognition for Mobile Devices 133

Figure 5.4: Screenshots of our real-time, server side object recognition system for

mobile devices.

5.2. Object Recognition for Mobile Devices 134

Hybrid: Single shot server-side processing with automatic release

Finally, we implemented an intermediate or hybrid approach. The idea is to lower the

burden on the server by avoiding processing of live video streams, but maintaining

usability over the single shot version. We propose to initiate queries from the client

automatically, when appropriate. More specifically, when the user holds the camera

still (pointed at a target), a request will be initiated. The appropriate time to

initiate a request will be determined by analyzing motion on the client device. We

implemented a prototype based on optical motion detection from the camera video

feed on the client device. For that purpose we relied on an implementation of motion

history images [Davis, 2001], which are part of the Nokia Computer Vision Library

for Symbian3. If the observed motion falls below a predefined threshold, a request

is sent to the server and the name of the detected object (if any) is displayed on the

screen. Figure 5.5 shows an example.

This approach could be extended by implementing client-side tracking of objects.

The tracking algorithm on the phone should be sufficiently simple to run in real-time

under the restrictions posed by the processing capabilities by todays mobile phones.

To handle drift, tracking could be verified by sending a request to the server for

more precise positioning and re-initialization of tracking on the client.

5.2.2 Sample Applications

In this section we propose and evaluate two sample application scenarios for object

retrieval from camera-equipped mobile phones.

The first one is slide tagging in smart meeting rooms. Users have the ability to

”click” on slides or sections of slides that are being presented to record them for their

notes or to add tags. The second application is a cityguide on the mobile phone.

Users have the possibility to take a picture of a sight, send it to a recognition service,

and receive the corresponding Wikipedia article as an answer. For this application,

the search space is limited by integrating location information, namely cell-tower

ids or GPS.

Both systems are experimentally evaluated in different dimensions, including differ-

ent phone models with different camera qualities, for the trade-offs using different

kinds of search space restriction (geographic location etc.), and with and without

projective geometry verification stage.

3http://research.nokia.com/research/projects/nokiacv/

5.2. Object Recognition for Mobile Devices 135

Figure 5.5: Motion detection for a mobile visual search interface.

5.2.3 Hyperlinked Slides: Interactive Meeting Rooms

Today’s meeting rooms are being equipped with an increasing number of electronic

capturing devices, which allow recording of meetings across modalities [Abowd, 1999;

Amir et al., 2001]. They often include audio recording, video recording, whiteboard

capturing and, last but not least, framegrabbing from the slide projector. These

installations are usually deployed to facilitate two tasks: allowing off-line retrieval

and browsing in the recorded meeting corpus and turning the meeting rooms into

smart interactive environments. In the work at hand, we focus on the captured

presentation slides which are a central part of today’s presentations. As shown

in Figure 5.6, the slides usually contain the speaker’s main statements in written

form, accompanied by illustrations and pictures, which facilitate understanding and

memorizing the presentation. Indeed, the slides can be seen as the “glue” between

all the recorded modalities. Thus, they make a natural entry point to a database of

recorded presentations.

A typical usage scenario for such a system could look as follows: Using the integrated

camera of her mobile phone, an attendee to a meeting takes a picture of a slide which

is of interest to her. The picture is transmitted to a recognition server over a mobile

Internet connection (UMTS, GPRS etc.). On the server, features are extracted

from the picture and are matched to the database of captured slides. The correct

5.2. Object Recognition for Mobile Devices 136

Figure 5.6: Typical presentation slides from the AMI corpus database.

Figure 5.7: The user ”tags” a presented slide using our mobile application by tak-

ing a picture (left), which is automatically transmitted to the server and recognized

(middle), a response is given in an automatically opened WAP browser (right).

5.2. Object Recognition for Mobile Devices 137

slide is recognized, added to the users’ personal “bookmarks”, and she receives a

confirmation in a WAP browser on her mobile phone. Note that the messaging

from the phone can be done using standard MMS or using a custom client-side

application which we programmed in C++ on the Symbian platform. Figure 5.7

shows screenshots of our mobile application for a typical usage scenario.

Back at her PC, the user has access to all her bookmarked slides at any time, using

a web frontend which allows easy browsing of the slides she bookmarked. From each

bookmarked slide she has the possibility to open a meeting browser which plays the

other modalities, such as video and audio recordings, starting at the pint in time

the slide was displayed. By photographing only a section of a slide, the user has

also the possibility to highlight certain elements (both text or figures) — in other

words, the mobile phone becomes a digital marker tool.

Of course one could assume a very simple slide bookmarking method, which only

relies on timestamping. The client-side would simply transmit the current time,

which would be synchronized with the timestamped slides. Our system does not

only allow for more flexible applications (the aforementioned “highlighting” of slide

elements) but is also more robust against synchronization errors in time. In fact,

using a “soft” time restriction of some minutes up to even several hours would make

our system more scalable and unite the best of both worlds. Finally, a system like

ours could also discriminate between multiple parallel sessions, which are common

at larger conferences.

The basic functionality of the proposed slide recognition system on the server is as

follows: for incoming queries, scale invariant local features are extracted. For each

feature a nearest neighbor search in the reference database of slides is executed. The

resulting putative matches are verified using projective geometry constraints. The

next two subsections describe these steps in more detail.

Slide Recognition System

We start from a collection of presentation slides which are stored as images. This

output can be easily obtained using a screen capture mechanism connected to the

presentation beamer. From the image files, we extract scale invariant features around

localized interest points. In our implementation we use again SURF [Bay et al.,

2006b] detector and descriptor combination.

Slide recognition consists again of the two steps feature matching and global geomet-

ric verification. For the feature matching we compare the feature vectors from the

query image to those of the images in the database. In this example we use linear

feature matching based on the Euclidean distance as in the previous chapters. Since

the database objects (the slides) are planar, we can again rely on a 2D homography

5.2. Object Recognition for Mobile Devices 138

mapping [Hartley and Zisserman, 2004] for the geometry filter. The result of such

a geometric verification with a homography is shown in Figure 5.8.

Experiments

For our experiments we used data from the AMI meeting room corpus [Carletta et

al. (17 authors), 2005]. This set contains the images of slides which have been

collected over an extended period using a screen-capture card in a PC connected to

the beamer in the presentation room. Slides are captured at regular time intervals

and stored as JPEG files. To be able to synchronize with the other modalities (e.g .

speech and video recordings), each captured slide is timestamped.

To create the ground truth data, we projected the slides obtained from the AMI

corpus in our own meeting room setting and took pictures with the integrated camera

of two different mobile phone models. Namely, we used a Nokia N70, which is a

high-end model with a 2 megapixel camera, and a Nokia 6230, which is an older

model with a low quality VGA camera. (See Table 5.1 for a detailed comparison of

the phone models.) We took 61 pictures with the N70 and 44 images with the Nokia

6230 4. Figure 5.9 shows some examples of query images. The reference database

consists of the AMI corpus subset for the IDIAP scenario meetings, which contains

1098 captured slide images.

We extracted SURF features from the reference slides in the database at two res-

olutions, 800x600 pixels and 640x480 pixels. For the 1098 slides this resulted in a

database of 1.02 ∗ 106 and 0.72 ∗ 106 feature vectors, respectively. For the SURF

feature extraction we used the standard settings of the detector.

The resolutions of the query images were left unchanged as received from the mo-

bile phone camera. We ran experiments with and without homography check, and

the query images were matched to the database images at both resolutions. A ho-

mography was only calculated if at least 10 features matched between two slides.

If there were less matches or if no consistent homography model could be found

with RANSAC, the pair was declared unmatched. If there were multiple matching

slides, only the best was used to evaluate precision. Since the corpus contains some

duplicate slides, a true match was declared if at least one of the duplicates was

recognized.

Table 5.2 shows the recognition rates, for the different phone models, different resolu-

tions and with and without homography filter. At 800x600 resolution, the homogra-

phy filter gives an improvement of about 2% or 4% for each phone type, respectively.

The recognition rate with a modern phone reaches 100%, the lower quality camera in

4The query images with groundtruth are made available for download under
http://www.vision.ee.ethz.ch/datasets/.

5.2. Object Recognition for Mobile Devices 139

Figure 5.8: Geometric verification with a homography. Top rows: matches for a

query image with the correct database image. Top left: before homography filter,

top right: after homography filter. As the match between the slides is correct most

of the putative feature matches survive the homography filter. At the bottom rows

we match the same image to a false database image. As can be seen at the bottom

left, a lot of false putative matches would arise without geometric verification, in

extreme cases their count can be similar to or higher than for the correct image

pair. At the bottom right all the false matches are removed, only features from the

(correctly) matching frame survive and the difference in matching with the correct

pair is drastically increased.

5.2. Object Recognition for Mobile Devices 140

(a) (b) (c) (d)

Figure 5.9: Examples of query images, from left to right: (a) with compositions of

text and image, (b) taken from varying viewpoints, at different camera zoom levels

or may contain clutter, (c) example which selects a specific region of a slide, or (d)

contains large amounts of text.

the older 6230 model results in lower recognition rates. The results for the 640x480

database confirm the results of the 800x600 case, but yield overall lower recognition

scores. This is due to the fact that at lower resolution fewer features are extracted.

Prec. w geometry Prec. w/o geometry

800x600 640x480 800x600 640x480

Nokia N70 100% 98,3% 98,3% 96,7%

Nokia 6230 97,7% 93,2% 91% 86,3%

Table 5.2: Summary of recognition rates for slide database.

As mentioned above, recognition with local features also allows for the “highlighting”

of parts of slides. This is especially interesting, when combined with a video stream

from the phone. The movement of the phone can be tracked and an overlay can be

shown on the tracked slides. An example is shown in Figure 5.10. The 320 × 240

feed has been matched to the slide collection, and the track has been highlighted

on the identified slide. Using a camera-phone, it is possible to virtually “draw” on

slides. For a real world system, some stabilization of the tracks would be required,

to cope with the shaky lines created from the unstable hand-camera movement.

5.2.4 Hyperlinked Buildings: A Cityguide on a Mobile Phone

The second application for the Internet of Things we present in this chapter deals

with a very different kind of objects. We “hyperlink” buildings (tourist sights etc.)

to digital content. Thus this application forms an interface to a database like the

one presented in Chapter 4. In this chapter we are particularly interested in the

retrieval performance depending on the camera quality and the inclusion of multi-

modal context such as geographic location information in the retrieval process.

5.2. Object Recognition for Mobile Devices 141

Figure 5.10: Virtual highlighting of slides.

Visual Data and Geographic Location

From the user perspective, the interaction process remains the same as in the meeting

room scenario: by the click of a button on the mobile phone, a picture is taken and

transmitted to the server. However, unlike in the meeting room application, the

guide client-side application adds location information to the request, making the

search multimodal. The geographic information consists of the current position read

from an integrated or external (bluetooth) GPS device and/or the current cell-tower

id CGI (Cell Global Identity).

While GPS returns longitude and latitude information, which makes localization

simple, CGI needs some more explanation. The localization reflects the GSM mobile

phone network and is based on the cellular structure of this network. Since the phone

is connected to one or several antennae, it is possible to determine in which cell the

subscriber currently is. Localization can now either build on exact positioning based

on triangulation between several antennae, on rough positioning given the location

of the corresponding cell-tower, or on prior observations of the same cell id at a

given location [Spirito et al., 2001]. The first two options are usually only possible

5.2. Object Recognition for Mobile Devices 142

Element Name Example

MCC Mobile Country Code 228 (Switzerland)

MNC Mobile Network Code 1 (Swisscom), 2 (Sunrise), 3 (Orange)

LAC Location Area Code 20000

CI Cell Identity 26337608

Table 5.3: Cell Global Identity

for network operators, since the access to the required data and functionality is not

publicly available. However, some phones allow to retrieve information about the

current cell, which enables us to use the third option.

The precision of this kind of cell-based positioning depends on the size of the cell.

Cells in cities are small and have an extension of 200 – 300 meters, in other words,

the location of mobile subscribers can be determined with a high accuracy. However,

in the country-side the cells have an extension of several kilometers. (The largest

cell in Switzerland has a radius of 35km.) The shape of a cell is a much more

complex structure than what is generally assumed. It can be composed of dozens

of geographic polygons and each polygon in turn can be composed of thousands of

coordinates. Each such cell is identified by a CGI. It is created by concatenating

the four elements shown in Table 5.3. Note that the LAC and the CI are operator

specific, i.e. the same geographic location has different LACs depending on the

MNC. The CGI can be obtained using the APIs of some mobile phone platforms, e.g .

with Symbian but not with J2ME (Java platform Micro Edition). When creating a

reference database, we can note the CGIs at the location of the object or the location,

where the picture was taken. When comparing a query image to the database, the

CGI associated with the incoming image is used to restrict the search to objects

with the same CGI.

Combining a picture and location data (either GPS or CGI) forms a perfect query

to search for information on static, physical objects. As mentioned before, location

information alone would in general not be sufficient to access the relevant informa-

tion: the object of interest could be several hundred meters away (e.g. a church

tower), or there could be a lot of objects of interest in the same area (e.g. the

St. Mark’s square in Venice is surrounded by a large number of objects of interest).

Furthermore, in urban areas with tall buildings and narrow roads, GPS data is often

imprecise. On the other hand, relying on the picture only would not be feasible,

either: the size of the database would make real-time queries and precise results

very difficult to achieve.

After the query has been processed, the user receives the requested information

directly on the screen of her mobile phone. In our demo application we open a web

browser with the Wikipedia page corresponding to the object. This is illustrated in

Figure 5.11.

5.2. Object Recognition for Mobile Devices 143

Figure 5.11: Client software for the cityguide application: the user snaps a picture,

waits a few seconds, and is redirected to the corresponding Wikipedia page.

System Design

The cityguide system consists of a server side recognition system and a client-side

software on the mobile phone.

The server-side elements consist of a relational database for storage of image meta-

data (GPS locations, cell information etc.) and information about the stored sights.

We used mySQL for this purpose. The image recognition is implemented as a server

in C++ which can be accessed via HTTP.

Queries from the client software are transmitted to the server as HTTP POST re-

quests. A middleware written in PHP and Ruby restricts the search by location

if needed and passes this pre-processed query to the recognition server. The asso-

ciated content for the best match is sent back to the client and is displayed in an

automatically opened browser, as shown in Figure 5.11.

Client software on the mobile phone was implemented both in Symbian C++ and

Java5. Note that the feature extraction of the query happens on the server side, i.e.

the full query image is transmitted to the server. Alternatively, our system can also

be accessed using the Multimedia Message Service (MMS). A picture is transmitted

5Unfortunately, only the Symbian version allows access to the celltower ids.

5.2. Object Recognition for Mobile Devices 144

to the server by sending it as an MMS message to an e-mail address. The response

(Wikipedia URL) is returned as an SMS message.

Object Recognition Method

The data from the client-side application is transmitted to the recognition server,

where a visual search restricted by the transmitted location is initiated. If GPS

data is used, all database objects in a preset radius are searched (different radii are

evaluated in the experimental section). If only cell-tower information is used, the

search is restricted to the objects annotated with the same CGI string.

The object recognition approach is very similar to the method discussed for the

meeting room slides. That is, putative matches between pairs of query and database

images are found by nearest neighbor search for their SURF [Bay et al., 2006b]

descriptors. These putative matches are validated with a geometry filter.

Experiments

To evaluate the proposed method, we collected a database of 147 photos covering

9 touristic sights and their locations. The 147 images cover the 9 objects from

multiple sides, at least 3 per object. The database images were taken with a regular

point-and-shoot camera. To determine their GPS location and CGIs we developed

a tracker application in Symbian C++ which runs on a mobile phone and stores the

current GPS data (as obtained from an external bluetooth GPS device) and CGI

cell information at regular time intervals. This log is synchronized by timestamps

with the database photos.

We collected another 126 test (query) images, taken with different mobile phones

(Nokia N70 and Nokia 6280, both with 2 Megapixel camera) on different days and

times of day, by different users and from random viewpoints. Of the 126 query

images 91 contain objects in the database and 35 contain images of other buildings or

background (also annotated with GPS and CGI). This is an important prerequisite

to test the system with negative queries, an experiment which has been neglected in

several other works. Compared to the MPG-20 database6 we have fewer objects but

each of them covered from multiple sides (in total about 30 unique representations),

more challenging viewpoints for each side (distance up to 500 meters), full annotation

with both GPS data and celltower ids, and more than 4 times as many query images.

The database with all annotations (GPS, cellids, objects Wikipedia pages etc.) is

available for download 7. Both database and query images were re-scaled to 500×375

6http://dib.joanneum.at/cape/MPG-20/
7http://www.vision.ee.ethz.ch/datasets/

5.2. Object Recognition for Mobile Devices 145

(c) (d)

(a) (b)

Figure 5.12: Result images for the city-guide application, see text for details.

pixels. (Sample images from the database are visible in Figure 5.12 and are discussed

a few paragraphs below).

Note that the CGI (Cell Global Identity) depends on the network operator, since

each operator defines its own set of cell ids. If the operator does not release the

locations of the cells (which is common practice in many countries for privacy rea-

sons), we have to find a mapping between the cell ids of different operators. We

achieved such an experimental mapping by using our tracker application: tracks ob-

tained with SIM cards of different mobile network operators were synchronized by

their GPS locations: if GPS points were closer than 50m, a correspondence between

the respective cell ids was established. This mapping is far from complete, but it

simulates an approach which is currently followed by several initiatives on the Web.

5.2. Object Recognition for Mobile Devices 146

Prec. w. geometry Prec. w/o geometry Time

Full database linear 88.0% 67.4% 5.43s

GPS 300m radius 89.6% 76.1% 3.15s

Cell id 74.6% 73.9% 2.78s

Table 5.4: Summary of recognition rates for cityguide.

We present experiments for three scenarios: linear search over the whole database

without location restriction, restriction by GPS with different search radii, and re-

striction by cellid. For all cases we compare the trade-off between search time and

recognition rate. A pair of images was considered matched, if at least 20 features

matched (with and without geometry filter). From the images which fulfilled this

criterion the one with the most matches was returned as a response. Table 5.4 sum-

marizes the results. For the baseline, linear search over the entire database without

geometry filter we achieve 67.4% recognition rate. This value is outperformed by

over 20% with the introduction of the geometry filter, resulting in 88% recognition

rate. This is due to the removal of false positive matches.

Restricting search by GPS location with a radius of 300 meters is about 40% faster

while increasing precision slightly for the case with geometry filter and more sub-

stantially for the case without filter. Restriction by cell-tower CGI is slightly faster

but significantly worse in precision. This seems mostly due to the fact that our

CGI correspondences for different operators might be incomplete. For a real world

application, where an operator would hopefully contribute the cell id information or

a search radius bound by GPS coordinates we would thus expect better results.

Overall the best results are achieved with GPS and a rather large radius of several

hundred meters. In Figure 5.13 we plot the precision versus time for different radii.

At 100 meters we retrieve most of the of the objects correctly, but only between 300

and 500 meters we achieve the same recognition rates as for linear search, however

at significantly higher speed. In fact, this speed-up over linear search will obviously

be even larger, the more items are in the database. The recognition times can be

further sped up with a suitable indexing structure such as the ones discussed in

Chapter 6.

Visual results are shown in Figure 5.12. Section (a) shows query images in the

left column and best matching database images for each query in the right column.

Note the distance of the query image to the database image in the first row and

the zoom and low contrast of the query in the second row. Section (b) contains a

query image at the top and the best database match at the bottom. Besides the

viewpoint change and occlusion through the lamp and railing, note that query and

database image have very different weather and lighting conditions since they were

taken several weeks apart. Section (c) shows another query database pair, this time

for a facade with strong cropping and change of angle. The last image in section (d)

5.3. Object Recognition for Web Applications 147

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Search Radius [m]

R
ec

og
ni

tio
n

R
at

e
[%

]

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Search Radius [m]

M
at

ch
in

g
T

im
e

[s
]

Figure 5.13: Recognition rate (left) and matching time (right) depending on radius

around query location.

contains a typical “negative” query image, which should not return any matching

object.

The results show the beneficial effects of the geometry filter. Overall recognition

rates could be improved with better coverage of database items with additional im-

ages, for instance based on the mining approach discussed in Chapter 4. Restricting

search to a geographic radius of a few hundred meters increases speed significantly

even in our test database and will be essential for large-scale real world applications.

At the same time, the results show that relying only on GPS information (objects

up to several dozen meters away) would not be suitable for a real-world guiding

application. Being able to “select” from many possible objects in the the user’s

vicinity (including far away objects) by simply pointing the mobile phone camera

to the desired target brings significant usability benefits to the users.

5.3 Object Recognition for Web Applications

As mentioned earlier in this work, the combination of the availability of cheap dig-

ital recording devices and the change of the Internet towards a more interactive,

multimedial platform (“Web 2.0”) opens new possibilities for object recognition ap-

plications on the Web.

Two sample applications we implemented shall serve as an example for what kind of

applications are to be expected in the coming years. Our applications are an interface

for auto-annotation on community photo collection, and a desktop application for 3D

reconstruction of photos. Both applications build on the mining methods introduced

in Chapter 4.

5.3. Object Recognition for Web Applications 148

5.3.1 Auto Annotation for Community Photo Collections

The goal of this application is to provide a simple, web-based auto-annotation in-

terface for photos on Flickr. The application implements the process proposed in

Chapter 4.6 and build directly on the mined object clusters. The user initiates an

annotation by dragging one of his photosets from Flickr to a map, as shown in Fig-

ure 5.14. The application identifies the country the set was dragged onto and tries

to find annotations for the photos in the set, by matching it with the mined object

clusters from that country. Currently the response time is not real-time and the

annotation is not done on the bounding box level yet, but these features can easily

be added.

The application is implemented using the Flickr API. Users can log-in with their

Flickr username, their photosets show up, and they can proceed with the annotation

process as just described.

Figure 5.14: Interface for auto-annotation of Flickr photos. Users start an anno-

tation task by simply dragging a set of photos to a country as shown in the example.

5.3.2 Browsing Photos in 3D

The ability to share images on the Web leads to collections with significant amounts

of photos of the same object. We exploited this fact already in Chapter 4 by clus-

tering photos which belong to the same object. The photos in the resulting clusters

show an object from varying viewpoints, which allows reconstruction of the 3D scene

5.3. Object Recognition for Web Applications 149

around the object. In theory, a complete and precise 3D reconstruction from pic-

tures taken with a large variety of cameras is possible. In practice, however, this

is quite challenging. An easier task consists of estimating the approximate camera

positions in 3D-space. This allows browsing photos in 3D, as proposed in [Snavely

et al., 2006]. The focus of that particular work is on the 3D reconstruction process

The creation of the photo-clusters the reconstruction is based on is not discussed.

The combination of our mining work with 3D browsing as in [Snavely et al., 2006]

thus offers the potential for exciting user interfaces to data in community photo

collections.

To investigate this potential in some more detail, we created a simplified imple-

mentation of the system described in [Snavely et al., 2006]. Our system consists

of a “classic” Structure-from-Motion (SfM) pipeline [Hartley and Zisserman, 2004].

The main challenges in our setting are estimating the correct intrinsic camera pa-

rameters from EXIF data provided with the photos, and the selection of a “good”

starting pair of images for the SfM process. Sensor data required to calculate the

internals for each camera is read automatically from EXIF files, from a database

downloaded from the Web, or by crawling camera datasheets from the Web. The

starting pair is selected by creating “tracks” of features through matched images, as

proposed in [Snavely et al., 2006]. (Our implementation uses connected component

analysis on a graph of matched features to identify good feature tracks). Point cor-

respondences for 3D-reconstruction were calculated from Harris corners [Harris and

Stephens, 1988], due to their more accurate localization compared to the Hessian

used in the SURF interest point detector. The implementation of the required frame-

work was carried out by Fabio Magagna during his MSc thesis, which summarizes

the details of the approach in [Magagna, 2008].

Figure 5.15 shows sample results. The examples demonstrate that it is possible

to calculate correct 3D representations for browsing from the data acquired with

the method from Chapter 4 – without additional supervision. However, full 3D

reconstruction of objects, especially for smaller clusters and for more complex items

than the ones shown in Figure 5.15 would require substantial additional refinements

at the 3D reconstruction pipeline.

While writing this thesis, a work which shows very similar results appeared in [Li

et al., 2008b].

5.3. Object Recognition for Web Applications 150

Figure 5.15: Examples of 3D reconstruction from community photo collection

data. The photos are positioned at the estimated camera locations, the object is

represented by a point-cloud calculated from point correspondences. In clockwise

direction: Arc du Triomphe, Notre Dame de Paris (close-up), Notre Dame de Paris,

Trevi Fountain Rome. (Only a small selection of cameras is shown)

5.4. Detecting and Reading Text in Images 151

Figure 5.16: Examples of text in natural scenes

5.4 Detecting and Reading Text in Images

In the preceding sections we described methods and showed implementations of

systems that mine or retrieve certain types objects, e.g . landmark buildings from

digital repositories such as online community photo collections. Many of those

images also contain another very specific type of “object”, namely text. Text is

omnipresent in our surroundings – it appears on street signs, store signs, product

packagings, etc. A good retrieval system for visual data would make use of this

information by extracting and indexing it. This would allow multimodal retrieval

based on text keywords, or potentially other applications, such as geotagging an

image based on a street name which was read from a street sign present in the

image.

However, unlike text in scanned documents, the text in those natural scenes can ap-

pear anywhere in the image, in any font, at any scale, with (perspective) distortions,

variable lighting, and large amounts of clutter. Figure 5.16 shows a few examples of

text in images from flickr.com. Nevertheless, text has very characteristic visual

properties. Thus, one might try to learn these properties and use them to locate

text in images such as the ones from Figure 5.16. In a second step, OCR (Opti-

cal Character Recognition) could be applied on the detected regions, and make the

extracted text available to a retrieval system.

5.4. Detecting and Reading Text in Images 152

We propose an approach for text localization based on the Viola-Jones face detec-

tor [Viola and Jones, 2001b]. This is motivated by the observation that text, just

like faces, seems to be composed of quite simple and characteristic patterns. The

hope is thus, that adapted features might be learned well with an approach similar

to face detection.

This chapter summarizes a joint work with my former Masters student Martin

Renold. His report [Renold, 2008] contains further implementation details and ad-

ditional interesting evaluations.

5.4.1 Text Detection Approach

Our text detection approach is an adaption of the Viola-Jones method for face

detection [Viola and Jones, 2001b]. Their system consists of a trained classifier for

faces, which is evaluated on rectangular windows at all locations and scales to locate

faces in previously unseen images.

To make this extraordinary large detection problem solvable in reasonable time,

their well-known method relies on a few key ideas, which are summarized in the

following:

• Image features are based on rectangular blocks and can be computed using

so-called integral images at any scale in constant time.

• A simple threshold is used to treat a feature as a weak classifier.

• Adaboost is used to automatically select a subset of all weak classifiers and to

combine them into a strong classifier.

• A cascade of increasingly complex strong classifiers allows to reject easy back-

ground early on without sacrificing much computation.

We discuss our slightly modified version of this pipeline for text detection in the

following sections.

5.4.2 Features

Text detection differs from face detection in several aspects, which leads to the

following requirements for our features:

• the features should be invariant to color inversion, since both black on white

and white on black text should be detected.

5.4. Detecting and Reading Text in Images 153

R

W

Figure 5.17: Block based features are parameterized by their location and size.

All possible rectangles within this 10x10 raster are considered during training.

Figure 5.18: The intensity based features used. The absolute intensity difference

between the black and the white region is calculated. Left: comparing block to

window intensity; right: Haar-like edge features

• while frontal face detection may use well-located features of the face (like the

eye region) the position and shape of letters are not fixed. Therefore statistical

properties (e.g . the texture) are more important.

We thus propose to use four types of features based on intensity, variance, edges,

and a scanline property. These features are calculated as follows: Similar to [Viola

and Jones, 2001b] most of our features are based on calculating measures on the

pixels within a sub-rectangle R of the window W , which is to be classified as text

or non-text. The geometry of this sub-rectangle is parameterized as in Figure 5.17.

Figure 5.18 shows three intensity-based features calculated from such sub-rectangles.

These features are similar to the ones used in [Viola and Jones, 2001b]. The main

purpose of the first feature (full block), is to check whether the regions above and

below the text line have a color different from the text. The horizontal and vertical

Haar-like features (2nd and 3rd in Figure 5.18) are also used in [Viola and Jones,

2001b]. However, we use absolute values in order to detect black and white text

equally well. Both feature types are contrast normalized with respect to the whole

window.

Another simple feature is the variance of the gray level values of pixels inside a region.

It is motivated by the observation, that regions with very low intensity variance are

quite common (sky, uniform surfaces) and rarely contain text. Furthermore, the

5.4. Detecting and Reading Text in Images 154

feature can be calculated efficiently from the squared integral image. We used two

variants of this feature type. The first feature is simply the variance inside the

whole detection window. Conveniently this value needs to be calculated anyway to

contrast-normalize intensity based features. The second feature calculates the ratio

between the variance inside a subrectangle and the variance of the whole window.

This has the effect of contrast normalization. One property of this feature is, that it

checks, whether a subregion contains only bright or only dark pixels instead of text.

A third type of features is based on edges. The idea is that text has a certain min-

imum and maximum number of edges. Those statistics are different for horizontal

and vertical edges, and also depend on the position within the detection window

(e.g . there is usually a blank stripe above and below the text). The challenge is to

somehow “count” the number of edges with just a few lookups in an integral image.

To that end, we first perform edge detection on the original grayscale image I(x, y)

using the Sobel operator. This results in the gradient images Gx(x, y) and Gy(x, y):

Gx(x, y) = I(x, y) ∗ Sx(x, y) (5.1)

Gy(x, y) = I(x, y) ∗ Sy(x, y) (5.2)

with

Sx =
1

8




1 0 −1

2 0 −2

1 0 −1


 and Sy =

1

8




1 2 1

0 0 0

−1 −2 −1


 . (5.3)

For the next processing steps, only the absolute values |Gx(x, y)| and |Gy(x, y)| are

Figure 5.19: The values of |Gx(x, y)| of the same text at different resolutions. We

are interested in counting the number of vertical edges inside the horizontal stripe

region R, independent of the resolution.

considered. Let us further assume that the original image is a clean black-and-white

binary image. Figure 5.19 shows an example of the |Gx(x, y)| values in a rectangular

block R. The sum along a single horizontal pixel row

g(R, y) =
∑
x∈Rx

|Gx(x, y)| (5.4)

5.4. Detecting and Reading Text in Images 155

is now a good approximating of the number of vertical edges crossing this row. When

combining all h pixel rows inside the w×h rectangle R to get a more robust feature,

the values of g(y) have to be averaged to still get an equivalent to the number of

edges:

ex(R) =
1

h

∑

(x,y)∈R

|Gx(x, y)|

ey(R) =
1

w

∑

(x,y)∈R

|Gy(x, y)|

Because the text will rarely be clean black on white, ex and ey depend on the contrast

of the text and the amount of noise in the window. Thus, three normalization

methods were put into the feature pool for Adaboost to choose from. For the

contrast:

window contrast: f1 =
fx(R)

s(W)
(5.5)

block contrast: f2 =
fx(R)

s(R)
(5.6)

where s(R) and s(W) are the standard deviation of the block R and window W ,

respectively. To tackle the noise problem, a third normalization comparing to the

number of edges within the whole detection window was used:

f3 =
fx(R)

fx(W)
. (5.7)

Combining the three normalization methods f1, f2 and f3 with ex, ey and ex + ey

results in nine different feature types. As a tenth edge based feature, we used the

fraction of the horizontal edges:

fr =
fx(R)

fx(R) + fy(R)
. (5.8)

Finally, a last feature type – scanline based features – was discovered rather coin-

cidentally. Starting from a border pixel of the detection window, all pixels along a

given scanline are walked through at the full image resolution (Figure 5.20). The

idea is to find the minimum or maximum segment length in the binarized image.

Binarization is done with a hysteresis to reduce noise effects near the transitions.

The high and low threshold values are centered around the window mean intensity,

with a distance chosen by Adaboost (between 0.5 and and 2 times s(W)).

We will show in the experimental section that adding each of the introduced feature

types improves recognition rates.

5.4. Detecting and Reading Text in Images 156

Figure 5.20: 10 horizontal, 10 vertical and 2 diagonal scanlines were in the feature

pool. The intensity value is tracked and binarized (with hysteresis) along the selected

scanline. The result is the minimum or maximum distance between two transitions.

5.4.3 Classifier Training

Training the feature cascade using boosting requires labeled training windows as

input. On training images, readable text lines were thus manually labeled with

rectangles, including some space above and below the letters. These labels were

split into detection windows with width-to-height ratio 2:1 and then used as positive

samples for Adaboost. An example annotation is shown in Figure 5.21.

Figure 5.21: Annotation Sample: overlapping 2× 1 windows used for annotation,

one example window is marked in green.

Bootstrappingg was done by randomly sampling background windows until their

number was equal to the number of the foreground windows. The last stage of

the cascade was allowed to train with only half as many background samples. The

training stops when there is not enough background left in the training set.

Classifier training follows mostly the approach proposed by [Viola and Jones, 2001b].

The only significant difference in our implementation is the use of Discrete Adaboost

with a modification for asymmetric learning, which updates the weights for each

boosting round in an asymmetric way. It is based on an approach proposed in [Viola

and Jones, 2001a] for Asymmetric Adaboost, but applied to Discrete Adaboost:

before each boosting round the weights of the positive samples are multiplied by a

5.4. Detecting and Reading Text in Images 157

factor C and the weights of the negative samples are divided by C. The factor C is

defined as

C = exp(
k

T
) (5.9)

where T is the total number of boosting rounds and k a constant chosen by the user.

Note that k = 0 stands for the symmetric case. Good choices for k turned out to

be 1 < k < 4.

One problem that arises here is that the number of boosting rounds T has to be

known before the boosting starts. Because the performance on the validation set is

used as a stopping criterion, T depends on how well the selected features work. But

this depends again on the choice of C. To resolve this, each stage is trained twice:

once with T set to the number of boosting rounds of the previous stage, and once

again with T set to the result of the first training round. This could be repeated

several times until T converges, but one iteration seems to be enough for practical

purposes.

5.4.4 Detection and Reading

Detecting text in a novel image is carried out by executing three steps:

1. Detect windows containing text-fragments using the trained classifier

2. Combine detected windows into lines of text

3. Read the text lines using OCR

Each of these steps is described in the following.

Detecting text fragments

For a test image all windows of all scales are classified in either text or non-text

using a classifier cascade trained as described in the previous section. A minimum

text window size of 40 × 20 pixels was used. The maximum size of the scanning

window is limited only by the image dimensions. Scanning windows are set at steps

of 0.4 (horizontal) and 0.2 (vertical) of the window size at the current scale.

5.4. Detecting and Reading Text in Images 158

Combining text fragments

The raw detection windows are clustered using a greedy window merging approach.

Isolated detections are discarded, assuming that they are false positives. A detection

rectangle R1 is merged to the cluster of the rectangle R2 if their intersection-over-

union measure is higher than 0.4:

|R1 ∩R2|
|R1 ∪R2| > 0.4 (5.10)

The merging procedure between windows and clusters is the same as the one used

in single-link hierarchical agglomerative clustering. The prior knowledge that text

detections are more likely to cluster horizontally than vertically is used by enlarging

all raw detection windows horizontally by 1/3 of their original width before clus-

tering. This turned out to have the additional benefit of including the first or last

letter of a text-line, which were often missed before.

Clusters consisting of less than three detection windows are discarded. To remove

outliers, for each of the remaining clusters, the text height is estimated by the log-

average within the cluster:

ĥ = exp(
1

n

n∑
i=1

log(hi)) (5.11)

The final text bounding box created from each cluster is the union of all detection

windows, excluding windows that are more than one scale step above the estimated

height ĥ. This modification was added due to the observation, that including all

detection windows often lead to an over-estimated bounding box size.

Reading Text using OCR

The final step for making the detected text accessible to a retrieval system consists of

decoding it using Optical Character Recognition (OCR). For that purpose we rely on

existing OCR engines. Results obtained using several commercial and open-source

engines are presented in Section 5.4.5.

Due to the challenging nature of the text we extracted from images of natural scenes,

several pre-processing steps are necessary, before feeding a text window into an OCR

engine. First, the detected regions are cut out and their histogram is normalized.

In order to keep processing times low, the resulting cropped image is scaled down

to a maximum height of 80 pixels.

Most OCR programs accept greyscale images as input, however earlier works such

as [Chen and Yuille, 2004] reported to get better results with prior binarization of

5.4. Detecting and Reading Text in Images 159

text areas. In general, binarization is a well studied topic in Computer Vision, a

recent study for the specific task of text binarization under challenging conditions

is for example [Lu and Tan, 2007].

Note that most binarization methods assume a black on white text and will give

very poor results for white on black. Because of this, white on black images must be

detected and inverted before binarization. Since there are usually more background

pixels than text pixels, this can be done simply by counting the pixels below the

mean intensity. The image is inverted if more than 50% of the pixels are below the

mean intensity.

We considered three different thresholding approaches for binarization: Otsu’s global

thresholding, Niblack’s adaptive thresholding and Sauvolas algorithm which is a

variant of Niblack (details can be found in [Lu and Tan, 2007]). Figure 5.22 shows

an example with the three thresholding methods applied. It is evident that in

contrast to scanned text, for natural scenes, global thresholding is not an option,

since it can’t handle effects such as gradients.

Figure 5.22: Original image, global threshold (Otsu), local threshold (Sauvola).

5.4.5 Experiments and Results

We present results of our method on a series of datasets, with a focus on detection

precision, but also reporting results on the whole recognition pipeline including OCR

performance. Three different datasets were used as training and testsets:

FlickrText. We collected a text dataset consisting of pictures of street signs and

advertisement panels in the region of Zürich. This set also contains images of book

pages, newspapers, and a few URLs and numbers displayed on LCD screens. Ad-

ditionally about a quarter of the images were downloaded from Flickr8. Only text

in roman letters was collected and annotated. In total, we labeled 599 rectangles in

209 images split into 3423 detection windows.

The background regions were also labeled manually in order to have text, non-text

and unlabeled data. Unlabeled areas were necessary for special cases, in particular

small, unreadable, rotated and heavily distorted text, as well as artistic fonts and

graffiti. It turned out that the training process often stopped because it could

8www.flickr.com

5.4. Detecting and Reading Text in Images 160

not find enough false positives to train on. Thus, additional city scene images

were collected from Flickr, and examples which contained many false positives were

labeled as additional background training data. Alltogether, background regions

from 632 images were thus used. Images from the Flickr set were then split randomly

into three subsets of equal size for training, validation and testing.

CamPhoneText. For this set, we took pictures of signs, newspapers, screens,

etc. using low-quality mobile phone cameras. We annotated the readable text in 88

challenging low-quality images (640× 480 with blur and noise). This set is intended

as a particularly challenging test set.

ICDAR. The ICDAR set is a benchmark set9 used in the 2003 and 2005 Text

Locating Competitions [Lucas, 2005] of the International Conference on Document

Analysis and Recognition (ICDAR). The set consist of 258 training images and 251

test images.

We evaluate the performance of our approach by measuring the quality of the text

detection and text reading separately.

Text detection

Text localization is measured by evaluating the correct detection of the individual

2:1 letter annotation windows. We evaluate the results using ROC curves, plotting

correct detections vs. false positives. The false positive rate is simply measured

by running the detector on the labeled background regions in the testing set. The

positive responses are counted and divided by the total number of classified windows.

This way, detections that overlap with a text region are never counted as false

positives.

For the true positive rate, we used two measures. The strict hit rate requires that

each window is detected at its exact position. The permissive hit rate (or just hit

rate) counts a true positive for the ground-truth window A, if there is any text

window B detected with an intersection-over-union value higher than 0.4:

|A ∩B|
|A ∪B| > 0.4 (5.12)

This measure is more realistic, since the detection of individual letters does not need

to be perfect, as clustering merges the letters later. Note that we use a value of 0.4

for the threshold, which is lower than in other object recognition tasks, where it is

9http://algoval.essex.ac.uk/icdar/Datasets.html

5.4. Detecting and Reading Text in Images 161

Figure 5.23: Detection results on Flickr set. Left: ROC curves for six training

runs. Right: complexity of the cascade for the same training runs (expressed in the

number of features used by the classifier).

typically 0.5. The reason is that the small letters contain more uncertainty already

in their annotation.

Overall detection results are shown in Figure 5.23. The ROC curves are created

by varying the Adaboost threshold of the last stage. The different outcomes for

the same training run are due to the random sampling of background during the

training process. The overall recognition rate is with 98% extremely high. Compared

with the state-of-the-art reported in [Lucas, 2005; Chen and Yuille, 2004] it seems

we reach the same level of precision, however, direct comparison is difficult, since

different evaluation measures on different datasets are used. (The evaluation is on a

detected word level - our algorithm detects individual text windows, which are then

merged to lines of text, but no discrimination of individual words is attempted at this

stage). It would be interesting to test our system in a new benchmark like [Lucas,

2005], by extending our algorithm to extract individual words.

The total runtime to produce the raw detection results on a typical 1600 × 1200

JPEG image is about 0.5s (Pentium 4, 2.40GHz). The actual detection part (after

the integral images are calculated) takes 0.18s. Figure 5.24 shows raw text detection

windows in difficult natural scenes.

Figure 5.25 shows how the various feature types are selected and combined. Each of

them leads to a substantial precision improvement while at the same time reducing

classifier complexity. It is worth noting that in the first four stages Adaboost selects

only edge based features. In the later stages all feature types are selected, with a

slight preference for edge based features.

Figures 5.26 and 5.27 show example results on the ICDAR trial test set. The results

show the detected text after clustering the individual detection windows. Figure 5.27

shows some typical false positive windows. It is also typical, that multiple fasle

5.4. Detecting and Reading Text in Images 162

Figure 5.24: Raw detection results: All results correspond to the highest ROC

curve in Figure 5.23. Note the handwritten text in the topmost line, rotated text,

and gradient in the 2nd and 3rd image, respectively, and the large amount of text

handled in the last example. The number at the bottom is not detected due to the

lack of spacing to the barcode.

5.4. Detecting and Reading Text in Images 163

Figure 5.25: Feature Selection and Combination by Adaboost. Effect on detection

performance (left), and classifier complexity (right).

Figure 5.26: Two difficult text areas from the ICDAR trial test set. True positives

in red and false positives in blue. Operating at a higher false positive rate (45∗10−6)

allows to find more of the text.

5.4. Detecting and Reading Text in Images 164

Figure 5.27: False positives. Some typical false positives when running at 45∗10−6

false positives (blue, background). At 5 ∗ 10−6 false positives (red) only the correct

text is found.

positives appear at the same location. Both figures demonstrate the tradeoff that

has to be found between tolerating false positives and missing some of the more

difficult text.

Figures 5.28, 5.29 and 5.30 shows additional example results for the text detection

after clustering raw detections.

Reading Text

To measure the OCR performance, the ground truth and the OCR output for each

image were treated as a “bag of words”. This is based on the assumption that a

word has been located correctly, if it was read correctly. We counted the number

of true positives and false positives. The true positives where counted with a strict

measure for correctly read words and a softer measure counting “almost correctly”

read words. “Almost correct” is defined as words with a Levenshtein [Levenshtein,

1966] (edit) distance to their groundtruth counterpart smaller than one third of the

correct word length.

All detected words, that do not refer do any word in the groundtruth we call “clut-

ter”. (Essentially, these are false positives).

5.4. Detecting and Reading Text in Images 165

Figure 5.28: Example detections (I). True positives in red, false positives in blue.

Note the variety of viewpoints and fonts, including handwritten text.

5.4. Detecting and Reading Text in Images 166

Figure 5.29: Sample detections (II). Note the text appearing in different contexts,

including station lists, cell-phone screens, cars, and stores.

Evaluation was carried out mainly on the CamPhoneText set, and on the ICDAR set.

We used the very challenging CamPhoneText, since it simulates a mobile application

scenario, where users send in text photographed with their mobile phone, with the

goal to initiate a web-search based on the extracted text.

Three different OCR engines were tested, two of them free software and one com-

mercial: Tesseract10, GOCR11 and the ABBYY FineReader Engine (FRE)12. The

results on the ICDAR set are shown in Figure 5.31 (left). FRE outperforms Tesser-

act in terms of quality, however Tesseract is faster. Overall, the rate of correctly

read words is with 8% quite poor, which is surprising after the good localisation re-

sults observed earlier. Unfortunately, the ICDAR competition [Lucas, 2005] did not

evaluate reading of text, such that no means of comparison is given. The absolute

performance on the CamPhoneText dataset Figure 5.31 (right) is drastically lower

10http://code.google.com/p/tesseract-ocr/
11http://jocr.sourceforge.net/
12http://www.abbyy.com/

5.4. Detecting and Reading Text in Images 167

Figure 5.30: Sample detections (III)

Figure 5.31: Comparing the different OCR engines after Niblack adaptive thresh-

olding, on the ICDAR datasets (left) and on the CamPhoneText dataset (right).

This is the result of the complete system, meaning that a missed word can be either

unreadable or not located.

5.4. Detecting and Reading Text in Images 168

due to the low resolution and heavy blur of the text in most images. While some

text was not found by the detector, much of the correctly located text could not be

read due to the blur.

In contrast to the PhoneCamText set, the ICDAR set contains high quality and

high resolution images. Missed detections were rather due to special fonts, cluttered

backgrounds and single letters or digits. Our detector requires a minimum of about

three letters, and the FlickrText training set did not include many images with

special fonts. An experimental training of the detector with a more challenging

dataset resulted in a more complex classifier, without a significant improvement in

precision.

As a verification, we also feed the whole image (without a localization step) to the

OCR engine. The output were only false positives in most cases.

The effect of binarization can best be seen with Tesseract in Figure 5.33. Niblacks

method turned out to work best, possibly because the advantage of Sauvolas method

would be mainly on empty regions, which do not appear often within the well-

located text boxes. Both implementations had two additional hard (non-adaptive)

thresholds for very dark and very bright regions, suppressing the most obvious noise.

Figure 5.32: A sample image from the low quality dataset. Using FRE, initially

only the text “QZH-737695” was returned. The text “www schmdJer comm” could

be read after scaling up the image.

Unlike Tesseract, FRE performed almost equally well on the original greyscale image

as with Niblack binarization (see Figure 5.33 (right)). Scaling the image up did help

sometimes, for example for the image shown in Figure 5.32.

Once text in an image has been located and read this opens a wealth of possi-

bilities for improved retrieval applications. One entertaining example is shown in

Figure 5.34. The task is to guess the location a picture was taken at by the text

5.4. Detecting and Reading Text in Images 169

Figure 5.33: Left: Results with Tesseract on the PhoneCamText set using the raw

greyscale regions, using global thresholding (Otsu), and using an adaptive threshold

(Niblack and Sauvola). Right: Comparing different methods on the PhoneCamText

set with the FRE Engine: without binarization, Niblack binarization, resized images,

and different operating point of detector (higher true positive rate).

detected in an image. In this example the location (Haapse, Estonia, where a large

fraction of this thesis was written) is correctly identified.

In summary, our boosting-based approach for text detection showed very good re-

sults with EER of over 90% on images of natural scenes. The combination of the

proposed features led to a strong and effective classifier, while maintaining fast ex-

ecution times. It turned out, however, that reading the text from the extracted

regions poses substantial challenges to current OCR engines. Especially on low

quality images taken with phone cameras, the result of OCR due to blur and clutter

is of very low precision. In conclusion, currently text recognition in natural scenes is

only feasible for images of high quality and by employing powerful OCR techniques

on the detected text windows.

5.4. Detecting and Reading Text in Images 170

HAAPSE I

(a)

(b) (c) (d)

(e)

Figure 5.34: Guessing location from text in images. (a) Where was this picture

taken? Detected text is labeled with the bounding box. (b) Close-up of the text.

(c) After binarization. (d) Text returned from OCR. (e) Result when sending the

text from (d) to Google maps. The picture was taken by the author of this thesis

in the small village Haapse, Estonia, indeed.

5.5. Related Work 171

5.5 Related Work

Our work on retrieval relates to a wide range of work carried out in this field. In

the widest sense, it relates to the early works on image retrieval mentioned in the

introduction of this chapter. Our work on retrieval for mobile devices relates to

more recent work in several aspects. One aspect covers work related to our smart

meeting room application, for instance the use of camera-equipped mobile phones

as an interaction device for large screens. Here, Ballagas et al. have suggested a

system [Ballagas et al., 2005] which allows users to select objects on large displays

using the mobile phone. However, their method relies on additional 2D barcodes

to determine the position of the camera and is meant to use the mobile phone

like a computer mouse in order to drag and drop elements on the screen. Very

recently, in [Boring et al., 2007] a system similar to ours has been proposed for

recognizing icons on displays. While the screens are conceptually similar to the

ones used in meeting rooms, we are not aware of any other work that has proposed

using camera-equipped mobile phones for tagging or retrieval of slides in smart

meeting rooms. The most similar works in that respect deal with slide retrieval

from stationary devices. For instance [Vinciarelli and Odobez, 2006] have proposed

a system, which applies optical character recognition (OCR) to slides captured from

the presentation beamer. Retrieval and browsing is done with the extracted text.

In contrast to our work, the method cannot deal with illustrations or pictures in the

slides. SlideFinder [Niblack, 1999] is a system which extracts text and image data

from the original slide data. Image retrieval is based on global color histograms and

thus limited to recognize graphical elements or to some extent the global layout of

the slide. Using only the stored original presentation files instead of the captured

image data does not allow for the synchronization of the slides to other modalities

such as recorded speech or video. Both systems are only meant for query-by-keyword

retrieval and browsing from a desktop PC. While our system could also be used for

off-line retrieval with query-by-example, we focus on tagging from mobile phones.

This requires the identification of the correct slide reliably from varying viewpoints,

which would not be possible with the cited approaches.

Another aspect is covered by work on guiding applications on mobile devices. [Bay

et al., 2006a] have suggested a museum guide on a tablet PC. The system showed

good performance in recognizing 3D exhibition objects using scale invariant local

features. However, in their system the whole database resisted on the client device,

which is generally not possible for smaller devices such as mobile phones and larger

databases. A similar system on a mobile phone, but with somewhat simpler object

recognition is the one proposed in [Föckler et al., 2005]. The suggested recognition

relies on simple color histograms, which turns out not to be very robust to lighting

changes in museum environments. Discriminating instances of the objects in our

5.6. Discussion and Conclusions 172

applications, namely slides or outdoor images of touristic sights, is even less reliable

with global color histograms.

The work most similar to our mobile city guide application is maybe [Paletta et

al., 2006]. Similar to the cityguide application presented in this paper, the authors

also suggest a cityguide on a mobile phone using local features. However, their

focus is on improving recognition capabilities using informative and compact iSift

features instead of SIFT features. Our work differs significantly in several points:

we use multiple view geometry to improve recognition, we rely on SURF features

(which are also more compact and faster than SIFT features), and we also investigate

numerically the effects of restriction by GPS or cell ids on the recognition rate and

matching speed. Finally, the test databases we propose contain images taken from

viewpoints with much larger variation than the databases used in [Paletta et al.,

2006].

Text extraction from natural scenes (Section 5.4) has also been covered by a small

number of recent works. An overview of early text information extraction systems

can be found in [Jung et al., 2004]. More recently [Chen and Yuille, 2004] proposed

an approach very similar to ours. It is worth mentioning that this system was

ranked second in the ICDAR 2005 Text Locating Competition [Lucas, 2005], only

being 2% lower in precision than the first-ranked method, but 40 times faster. A

similar approach was also taken in [Wu, 2005], where text localization was part of

a spam classification system. While their methods are also based on the concepts

from [Viola and Jones, 2001b], our method differs in several ways. First, we propose

a different set of features to detect text. Furthermore, we evaluated feasibility of

text detection on data taken with mobile phone cameras, with the goal to extend

our object recognition system with text recognition on mobile devices. Finally,

preliminary results not included in this thesis indicate, that our approach can be

also used to efficiently detect and decode 2D barcodes in natural scenes.

5.6 Discussion and Conclusions

We have presented retrieval applications for multimodal scenarios. The applications

focus on identifying a specific object in a scene and to return related multimodal

information about the identified object. The required information about objects can

be collected e.g . with a mining process, as presented in Chapter 4.

We have put a strong focus on object recognition for mobile phones, which allows

users to request information on objects by taking a picture of them. Our approach

to object recognition for mobile devices relies on server-side recognition, combined

with an optimized user interfaceon the client-side. On the server-side, we have

implemented a recognition system and evaluated its capabilities in two challenging

5.6. Discussion and Conclusions 173

scenarios: slide tagging from screens in smart meeting rooms and a cityguide on

a mobile phone. For both applications the object recognition system is based on

state-of-the-art local features, combined with a geometric verification of potential

matches. Multimodal information such as the geographic location of the mobile

user are added to the query process in order to increase precision and scalability.

Evaluation carried out for both applications showed the benefits of using a geometric

verification, while recognizing both planar slides and 3D buildings from challenging

images taken with mobile phone cameras.

For the mobile user interface, we have investigated several options, including real-

time streaming and augmentation of objects on the screen with 2D bounding boxes,

and a motion detection based interface for automatic initiation of queries to the

server. Especially the motion detection based approach seems interesting for further

evaluation. Identifying an object from databases with millions of items on the

device itself will probably be infeasible for at least a few years. Thus, server-side

recognition offers significant advantages. The load on the server can be reduced

by iniitating queries sporadically. On advanced mobile phones such as the iPhone

client-side tracking of detected objects could now be added, which would result in an

improved user experience and would allow for interesting mobile augmented reality

applications.

In addition to the mobile user interfaces we also introduced two sample applications

for the Web. One application exhibits a simple drag-and-drop user-interface for

auto-annotation of photos in community photo collections with detected landmark

buildings etc. The second application reconstructs a 3D point cloud and camera

position estimations from clusters of photos belonging to the same object. Such

an application is intended for appealing browsing of photos in community photo

collections. Both applications build directly on the results from the mining method

presented in Chapter 4.

Finally, we have also proposed an approach to localize text in images of natural

scenes. This has applications for both mobile- and web applications, allowing to ac-

cess the text in the images for keyword search, or conversely, using it to initiate text

queries from images in a QBE scenario. The approach is based on the Viola-Jones

approach for face detection using modified features which obtained good results on

challenging benchmark datasets.

6
Scaling Retrieval

6.1 Introduction

In the preceding chapters we introduced several methods for object-level mining

and retrieval of visual data. All of these methods have in common, that they rely

on local image features for recognition. The recognition process always includes

a matching step, where, for a query feature vector, the matching vectors from a

database have to be identified. To make a mining or recognition system scalable,

this matching step has to be efficient. One way to achieve scalability is to reduce

the amount of data that has to be searched by including background knowledge.

We did this in Chapter 4 when we carried out matching of images per geographic

tile. And in Chapter 5 we reduced the search space for landmark buildings by

including geographic location data with the query. However, sometimes we can’t

avoid searching databases with millions of items. Either because the data does not

offer any possibility to restrict search with another modality (e.g . a database of

book or CD covers), or when even with the inclusion of restrictions the number

items to be searched are in the order of hundreds of thousands. Finally, for many

real-world applications interactive response times and the ability to process queries

from multiple users efficiently are desired. These cases require scalable methods to

search large databases of local features.

Using visual vocabularies (see Chapter 2.3) has recently been shown to scale to large

amounts of data, when using large vocabulary sizes [Nistér and Stewénius, 2006;

Philbin et al., 2007]. However, significant amount of research has been carried out

over many years trying to solve the underlying general problem, namely the efficient

identification of (approximate) nearest neighbors in high-dimensional spaces. Some

of these methods promise advantages over the visual words approach, mostly by

avoiding the time consuming clustering process, which is required to create visual

vocabularies. The goals of this chapter are thus twofold: first we want to investi-

gate the performance of alternative methods to the clustering approach, especially

methods which would in theory promise better scalability than k-means clustering.

6.2. Datasets, Features, and Evaluation Metrics 175

Second, we are interested in investigating the unique properties of databases of local

image features compared to “general” nearest neighbor search problems, and which

impact these properties have on the design choices for a scalable retrieval method.

The main contributions of this chapter are: 1) an extensive evaluation of the “classic”

algorithms LSH, metric trees, and the more recent Redundant Bit Vectors (RBV) in

terms of NN search versus scalability on large databases of local image features. 2)

An evaluation of strategies to move from NN search to an image or object retrieval

system. 3) An exhaustive evaluation and comparison to recent clustering-based

methods for large benchmark datasets. We limit our evaluation to the appearance

feature indexing problem in this chapter. Geometric verification can be added to

improve any such method.

The chapter is organized as follows: we start with an introduction of datasets and

evaluation measures in Section 6.2. We continue with summaries of the methods we

consider for evaluation in Section 6.3. This is followed by an evaluation in terms of

nearest neighbor (NN) retrieval performance in Section 6.4. Section 6.5 discusses

the steps to get from NN search to object retrieval. In Section 6.6 we evaluate a

selected algorithm (forests of metric trees) on large datasets and compare to other

state-of-the-art methods. The chapter ends with a discussion of related work and

our findings in Sections 6.7 and 6.8.

This chapter is based on an evaluation carried out by my two former students David

Scheiner and Reto Schwarz during their Masters thesis [Scheiner and Schwarz, 2007].

6.2 Datasets, Features, and Evaluation Metrics

We will evaluate the different methods on recent benchmark data from [Nistér and

Stewénius, 2006; Philbin et al., 2007] and on additional large datasets, which we

collected ourselves. More specifically, throughout the chapter we will report results

on the following sets:

UK Set: A collection of 2500 objects, each shot from four different viewpoints,

introduced in [Nistér and Stewénius, 2006].

UK Set Small: The first 5 000 images of the UK Set. The query set consists of

the first viewpoint of the first 500 objects. All query images are removed from the

database, resulting in a data set of 4 500 images.

Oxford Set: A dataset containing 5000 images of different Oxford landmarks

from [Philbin et al., 2007].

6.2. Datasets, Features, and Evaluation Metrics 176

Dataset # Images # Features # Q # Q-feat.
UK 10 200 15 297 858 2550 3 863 723
UK S 4 500 1 736 564 500 167 617
Oxford 5 063 21 406 572 55 105 881
Amazon 52 002 55 021 426 79 400 559
DMOZ 1 146 819 328 528 420 - -

Table 6.1: Dataset Statistics: Number of database images, number of database

features, number of query images and query features.

Amazon Set: A database of 52 000 DVD covers we downloaded from ama-

zon.com. 79 query images were photographed from real DVDs using mobile phone

cameras.

DMOZ Noise set: 1 million random images we downloaded following links on

the first few levels of the Open Directory Project. This set is intended as a large

noise set.

Figure 6.1 shows some example images from the datasets, and Table 6.1 shows a

summary of the dataset sizes. For each set we extracted SURF [Bay et al., 2006b]

features, which results in a bag of 64-dimensional feature vectors for each image.

We chose SURF features due to their fast extraction times and good recognition

performance in prior evaluations.

We consider several evaluation measures. To investigate the quality of nearest neigh-

bor (NN) search, we measure how well an algorithm performs in finding the true

NN. The effective distance error E was proposed by [Gionis et al., 1999]: given the

distance dt to the true NN and the distance dalg to the NN found by the algorithm

for each query point q ∈ Q, the effective distance error is calculated as follows:

E =
1

|Q|
∑
q∈Q

(
dalg(q)

dt(q)
− 1

)
(6.1)

where Q is the set of all query points. It measures the average error resulting from

the approximate nature of the algorithms. In addition to E, we also consider the

fraction of true NNs found (for a set of ground truth query points) by each algorithm.

To evaluate algorithms on the retrieval system level, we use the mean average preci-

sion (mAP) measure, as proposed by [Philbin et al., 2007]. Average precision (AP)

is the area under the precision-recall curve for a query. An ideal precision-recall

curve has a precision of 1 over all recall levels and with this an average precision of

1. Mean average precision is obtained by averaging the AP values for several queries

of a test set. On the UK Set the same metric as in [Nistér and Stewénius, 2006] was

used, which is a score defined by the average fraction of correct (i.e. depicting the

same object) images in the first four results, i.e. a score in the range [0, 4].

6.3. Overview of Methods 177

Figure 6.1: Query image and three true positives for each the UK Set, Oxford Set

and Amazon Set

6.3 Overview of Methods

We complement the works using k-means clustering by investigating several NN

search methods; Locality Sensitive Hashing (LSH) [Datar et al., 2004], Redundant

Bit Vectors (RBV) [Goldstein et al., 2005], and metric trees [Uhlmann, 1991]. All

methods have been suggested to perform well in high-dimensional spaces. LSH is

probably the most popular approximate NN search technique today. Metric trees

(or the similar balltrees) represent “classic” exact methods with good performance.

Notably, in [Liu et al., 2004] a study on smaller datasets showed that metric trees can

be adapted to handle the approximate NN problem with a speed-up of up to 30 times

over LSH. RBVs are a rather new approach which recently received interest due to

their speed-up over LSH at low memory consumption. These methods represent

a good variety of different approaches to NN search with a good performance in

earlier studies and with a high potential for scalability. In the following sections, we

evaluate how the methods compare in terms of finding the correct NNs versus their

consumption of resources. We start with a summary of the theory for each method.

6.3. Overview of Methods 178

6.3.1 Locality Sensitive Hashing

LSH [Gionis et al., 1999] is a popular family of algorithms for approximate NN

search. Its basic idea is to apply several hash functions to the points in the database,

which ensure that points lying close to each other have a higher probability of col-

lision than points far apart. A query point is treated with the same hash functions,

and points found in the matching buckets are retrieved. We chose an algorithm

proposed in [Datar et al., 2004], which works directly in the Euclidean space (un-

like [Gionis et al., 1999] and related methods which operate in Hamming space).

The employed hashing procedure maps d-dimensional points d ∈ Rd to the integer

range by random projections

h(d) = ba · d + b

w
c (6.2)

With this, the integer range is segmented into r sections of width w = INT MAX/r.

b is randomly selected from a uniform distribution [0, w]. The elements of vector a

are drawn from a p−stable distribution, in our implementation a Gaussian distribu-

tion, since we use an L2 norm (see [Datar et al., 2004] for details). For increasing

r, the width w of the segment in which random projections fall decreases. By this

scheme, close-by points are mapped into the same sections of a projection with high

probability. Random collisions are further minimized by concatenating k random

projections

x(d) = (ba1 · d + b

w
c, ..., bak · d + b

w
c) (6.3)

into a random has function x. By increasing k, the probability that two points far

away accidentally map to the same x diminishes, while two close points likely result

in the same x-value. Therefore the probability that two random points map to the

same hash key converges to zero.

6.3.2 Redundant Bit Vectors

Redundant Bit Vectors (RBVs) are a rather new method, proposed in [Goldstein et

al., 2005] as an approach for high-dimensional nearest neighbor search and originally

intended for indexing audio fingerprints. While one of the main strengths of the

method is its ability to quickly discard items that don’t have a match in the database

(“negative queries”), it can also handle (bounded) NN search. [Goldstein et al., 2005]

reports good results, especially an order of magnitude speedup over LSH in an audio

fingerprinting database. A particularly interesting property of RBVs is their small

memory footprint.

6.3. Overview of Methods 179

The main idea of the RBV algorithm is to quantize the query space (instead of the

feature space, as in almost all other fast NN matching approaches). The argumen-

tation is, that in high dimensional spaces locality properties are weak, and thus the

grouping of the database into bins defined by locality is rarely helpful while search-

ing. To that end, each dimension of the query vector is split into Q bins. Next the

algorithm constructs an individual hypercube of side length 2ε around each data

point x1 . . . xn ∈ Rd. This hypercube overlaps with one or more of the Q bins in

each dimension. The set of all n data points falling into a bin is represented by a

bit vector of length n, where a 1 means that the corresponding point extends into

the bin for that dimension.

Thus for each dimension, a Q×n bit field representation of the data is created. The

total memory requirement for all bit fields is Q ·n ·d bits. The side length 2εi of each

hypercube is determined by calculating the average distance to t randomly selected

data points. The resulting value is then multiplied by a tunable factor r.

Note that the size of the Q bins for each dimension depends on ε and that the bins

are not of equal size. To determine the sizes of the bins, tentative bin boundaries

are created by adding and subtracting ε values from each data point. For each

dimension, a list is built and sorted. The lists are partitioned in 2n/Q blocks. The

first and the last element in a block define the boundaries of a bin.

At query time, for all dimensions the bins containing the query point are selected,

and the associated bit vector column is retrieved. All bit vector columns found are

combined using the bitwise AND operation on blocks of 64 bits (64 bit architecture).

The i-th non-zero entry in the resulting vector indicates that the query point falls

within the hypercube of the i-th data point. For a small r, this often leads to a result

vector containing only zeros, since the algorithm was designed to discard negative

queries. For (approximate) NN retrieval a slightly adapted version is required. We

introduce the following cut-off criterion: while we AND the dimensions, naturally

with each AND-operation less non-zero bit vector elements are left. If the number

of non zero entries drops below a threshold value, we stop early. This leaves us

with a set of NN candidates instead of only one single closest, which we search in

linear fashion. This procedure adds softness to the method, which helped finding

more true NN at low cost in speed. In fact, by stopping AND-ing early, we save some

processing time, which is “recycled” for the linear search at the end.

6.3.3 Metric Trees

Metric trees were introduced in [Uhlmann, 1991]. In a metric tree, the data points

are partitioned by their distance to certain pivot points. At every node of the tree,

two points (the pivots) of the dataset are selected. Then the distance to the two

pivots is calculated for all points in the node, and the points are assigned to the

6.3. Overview of Methods 180

closer node. In this fashion the data is split into two sets, which are sent to the child

nodes, and the process is repeated. When a node only contains one data point, the

process is stopped. This node then constitutes a leaf of the metric tree.

Literature on metric trees describes many possibilities to optimize the tradeoff be-

tween quality and resource-consumption of these tree algorithms [Ciaccia et al., 1997;

Liu et al., 2004; Moore, 2000]. However, since most works only deal with compar-

atively small data sets (up to 100,000 data points) or “low” dimensionality (up to

d ≤ 30), it is not immediately evident how these optimizations would perform on

large data sets. Thus, we implemented several variations of metric trees and tested

them on our data. The methods differ by three characteristics: the partitioning

scheme, the handling of data near partition boundaries, and pivot selection.

Partitioning schemes are either spherical or symmetrical. For the former, a hyper-

sphere is drawn around one of the pivots. All data points inside the sphere are

assigned to the node whose pivot defines the sphere’s center. All remaining data

points are assigned to the other node. In a symmetrical partitioning scheme, a

hyperplane is created which separates the space at equal distance to the pivots.

Since splitting the data between the pivots is a hard decision, points near the bound-

ary might lead to false decisions while traversing a tree. One method to avoid

this problem is to introduce overlapping boundaries, or “spilling” [Liu et al., 2004;

2007]. Points lying inside an overlap region belong to both pivots. Therefore, these

data points are duplicated and assigned to both child nodes. This procedure can be

carried out while building the tree (“buildup spilling”) or during lookup (“lookup

spilling”, or “backtracking”).

Finally, there are several ways to select the pivots, the simplest being a random

selection. We use a “ping-pong” scheme: at each node one pivot is selected at

random, its distance to all other points in the current set is calculated, and the

point farthest away is selected as the second pivot. This process is repeated until no

points remain. After intensive prior experiments, we identified the following variants

of metric trees as promising candidates:

mtreesph: tree with spherical partitioning. The radius of the sphere is the mean

of the distance from the pivot to all other datapoints. Lookup spilling is

implemented using an overlapping region, defined as the fraction d of the

sphere radius. If a query point lies inside the overlap range, it is “duplicated”

and sent to both children.

mtreesym: symmetrical partitioning and lookup spilling by an overlap region along

the separating hyperplane instead of the sphere, defined by the fraction d of

the distance between the pivots.

6.4. Evaluation in terms of NN Search 181

Note that spilling requires additional memory for the duplication of data points. One

way to optimize memory usage is the hybrid spill tree [Liu, 2006]. The basic idea

is not to spill at each node, but only where it would make a substantial difference.

We tried several proposed schemes but did not observe improvements over regular

spilling on our data.

6.4 Evaluation in terms of NN Search

Our first set of experiments compares the three proposed algorithms in terms of NN

search. A good algorithm has the following desirable properties:

1. It is fast in finding the NN.

2. The index representation is compact (in memory).

3. The time to build the index is manageable.

4. There are few parameters to optimize.

Thus, in this series of experiments we set the quality of NN search in relation to the

first three criteria. The last criterion (number of parameters) will be discussed at the

end of this section. We compare the different NN methods on the UK Small dataset

(see Section 6.2). For each algorithm, we varied its parameters and studied the effect

on performance in precision, resource consumption, and build time. We selected the

result which showed the best performance and/or performance vs. resource trade-

off and compare them in Figures 6.2 and 6.3. Figure 6.2 shows the results for

the effective distance error measure. The curves are obtained by varying one free

parameter for each algorithm.

For LSH, we varied the parameter r (number of sections) between 150 and 375. Small

r values result in a large number of collisions. Therefore, each bucket contains many

data points, which have to be searched in a linear fashion. In general, this leads

to a low error rate at a higher cost in computation. The number of concatenated

functions k is set to 10, as suggested by [Datar et al., 2004]. Other values were also

tested but do not push the results beyond those reached with k = 10. Increasing

k leads to fewer collisions, whereas decreasing r leads to more collisions. As both

parameters have a coupled effect, only r is swept. The hash table size was set to 12

bits. Different table sizes were tested, but did not result in an improvement.

For RBV, the parameter r (which controls the hypercube size) was varied in the

range [0.05, 0.3]. Several values for the number of bins per dimension Q were tested.

Q = 12 gave the best results and is shown in this summary. As suggested in [Gold-

stein et al., 2005], t (number of randomly selected datapoints) was set to 100.

6.4. Evaluation in terms of NN Search 182

Figure 6.2: Quality of NN search: Effective Distance Error

Finally, we show two metric tree versions using spilling during lookup, which gave the

best results in our prior evaluations. Curves are generated by varying the spilling

parameter d between [0, 0.1] for the spherical mtree mtreesph and [0, 0.7] for the

symmetrical mtree mtreesym. Higher overlap d results in better error rates, but

comes at a cost in speed, since more branches have to be considered during lookup.

As Figure 6.2 shows, all algorithms reach about the same level of effective distance

error, with metrics trees and RBV slightly better than LSH. The highest speed-up

over linear search at low effective distance error is reached by the trees (first row of

plots). It is interesting to observe how LSH can be increased in speed, but not only

at cost in error, but also at a cost in memory requirements and build time (2nd and

3rd rows). The second row also shows, that the lowest memory usage is achieved by

RBVs. The memory consumption of trees is higher than the one of RBV, but stable

compared to LSH. Trees also exhibit the lowest build time (3rd row). Also note the

low absolute value of the build time: in about 1 minute, we can build a tree for the

UK Small dataset, which consists of 1.7 million features.

Figure 6.3 shows the results for the fraction of true NNs found. The curves are again

obtained by sweeping through the same parameter ranges described above. RBVs

recover the largest fraction of true NNs. The worst performance in these terms is

6.4. Evaluation in terms of NN Search 183

 0
 100
 200
 300
 400
 500
 600
 700

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

av
g.

 lo
ok

up
 ti

m
e

sp
ee

du
p

mtreesph
mtreesym

LSH
RBV

 0

 50

 100

 150

 200

 250

 300

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

av
g.

 m
em

or
y

us
ag

e
[M

B
]

 0
 50

 100
 150
 200
 250
 300
 350

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

av
g.

 b
ui

ld
 ti

m
e

[s
]

fraction of true nearest neighbors found

Figure 6.3: Quality of NN search: Fraction of True Nearest Neighbors

again achieved with LSH. Trees recall a smaller fraction of true NNs, but offer the

highest speed-up at low to medium NN-recall values.

With our intention of scaling to even larger datasets, in summary the best results are

achieved using the metric trees. They offer a good trade-off in scalability (speed-up

and build time) at reasonable loss in precision over linear search. RBV performs

very well in terms of precision. However the speed-up over linear search is not high

enough. Considering that it is a fairly novel method, further research might lead

to improvements here. Surprisingly, LSH did not perform as well as expected and

seems to be the worst of the three methods. In spite of our careful implementation,

a possible explanation might be that we did not find the optimal parameters for this

method. However, even if this is true, it does not speak in favor of LSH. On very

large datasets it is extremely time-consuming — if not impossible — to optimize

many parameters.

Note that by using local features, we can afford losing some of the NNs: objects in

images are typically covered by hundreds of features. It just has to be assured that

a sufficient number of features is extracted, so that later processing stages (such as

RANSAC) have enough data, even if we potentially lose a large fraction of NNs. This

situation is different from early research in the field of large-scale image databases:

6.5. From NNs to retrieval in large databases 184

the global image features typically used in those early works did not offer this kind

of redundancy.

6.5 From NNs to retrieval in large databases

From the experiments in the previous section, we learned that we can achieve sig-

nificant speed-up over linear search, mostly at the cost of losing some true NNs. In

this section, we want to devise strategies to handle those losses and recover some

of the precision. The first question to be answered is whether a retrieval system

requires all the true NNs to achieve good overall precision. Figure 6.4 (top) shows

overall recognition score1 versus fraction of true NNs found in the UK Small Set.

Linear search is at the top-left with the baseline score of 1.62. It is clearly visible

that all algorithms come close to the performance of linear search by recovering only

30% − 50% of the true NNs. This effect is due to the aforementioned redundancy

coming with the use of local features, which liberates us from retrieving the true NN

for each feature. An immediate conclusion from this insight is that we might try to

recover some of the true NNs by retrieving k near neighbors instead of only one —

hoping that by this we add less noise to the results than we gain precision.

Thus, in Figure 6.4 (middle) we show an experiment which reports mAP vs. k for the

Oxford Set using linear search over the entire set. The ranking of results is defined

by the number of “votes” each image gets, i.e. by the number of features from the

query image that matched in the database image. The scatter points correspond to

different parameter settings of each algorithm. Since we retrieve not only the NN,

but k near neighbors, we can also apply different voting strategies, which correspond

to the different curves. Regardless of the voting strategy, a maximum performance is

reached around k = 15. The gain over using only the closest NN is quite substantial.

The three different voting strategies are intended to suppress noisy votes and are

defined as follows: singlecount allows only one vote (match) for each feature per

image, inverse weighting and inverse quadratic weighting weight votes by the inverse

distance between data and query point. While the inverse weighting even lowered

the results, singlecount weighting helped to gain a few percent. This effect can

be explained by the removal of multiple votes stemming from repeated and non-

discriminative patterns.

1Here, a slightly modified UK score was used. Query images are not included in the result
set, and the remaining 3 correct images are weighted by their retrieved position, the maximum is
1 + 1/2 + 1/3 = 1.833.

6.5. From NNs to retrieval in large databases 185

Figure 6.4: True NN vs. ranking score (top) and mAP vs. number of near

neighbors k (bottom)

6.6. Evaluation on Large Datasets 186

6.5.1 Forests of randomized metric trees

Based on the experiments in Section 6.4 and the results above, we focus on one of the

algorithms to scale to large datasets. We chose the metric tree due to the speed-up

we observed in Section 6.4 and the ease to handle it compared to the other methods.

The only drawback is the larger memory consumption. Considering, however, the

lesson learned from Figure 6.4 that it is not only sufficient but beneficial to retrieve

k near neighbors, we do not have to build complete trees. Rather, we can build a

smaller tree from a random sample of the data. All remaining points of the set are

then inserted into the tree and appended to a list of features for the leaf they fall

in. This way, we save memory and are able to retrieve multiple close matches for

query points at the same time. In fact, this representation is very similar to the

“visual words” obtained from k-means clustering in [Nistér and Stewénius, 2006;

Philbin et al., 2007]. Note that metric trees are in general unbalanced. The number

of levels on each side of the root is data dependent, trees will generally be deeper

where data is dense.

During lookup, each query point is inserted into the tree, and all the images in the

matching leaf receive a vote. In addition, lookup-spilling is applied, such that each

query point may fall in multiple leaves, i.e. may generate multiple votes. Further-

more, we introduce a new spilling variant, which we call “insert spilling”: while

inserting the full data in the tree (which was built from a random subset of the

data) we have this additional possibility for spilling.

Finally, instead of using one single tree, we can use multiple smaller trees, each

built from a random subset of the data, i.e. forests of randomized metric trees. In

the next section we evaluate this method on a variety of large datasets. In spirit

this idea is along the lines of [Moosmann et al., 2006; Ozuysal et al., 2007], where

different types of randomized trees have been used. The differences here are that

randomness is based on the random subset used to build the trees, that our trees

are built on NN search, and that we consider retrieval in very large datasets (as

opposed to classification on smaller sets).

6.6 Evaluation on Large Datasets

In the previous sections we compared several approximate NN search algorithms and

concluded that metric trees offer the best opportunities to scale to the truly large

datasets introduced in Section 6.2. Below, we will evaluate the metric trees under

this aspect, and compare their performance to the k-means methods of [Nistér and

Stewénius, 2006; Philbin et al., 2007].

We first compare performances on the Oxford data using the mAP measure for

different tree configurations. The trees we compare differ in the size of the random

6.6. Evaluation on Large Datasets 187

0 5 10 15

x 10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m
A

P

size of random subset for tree creation

spill factors 0.1/0.1
spill factors 0.1/0.5
spill factors 0.5/0.5

Figure 6.5: Forests of metric trees: mAP for different random sample sizes and

spilling settings.

data sample used to create the tree, in the spilling parameters, and, if multiple trees

are used, in the number of trees in the forest. All trees are symmetric metric trees.

Figure 6.5 shows results for individual trees created from random samples of different

sizes and with different spilling configurations. One can see that the performance

is dependent on the sample size and its optimum is reached at a fraction of the full

set size. This is the same effect observed before for voting with k near neighbors

instead just the NN: if the tree size approaches the size of the full dataset, only few

features remain in the leaf nodes and few votes are generated for each query feature.

The three curves in the plot represent three different spilling configurations, each

defined by a pair of spill factors. The first spilling parameter denotes insert spilling,

the second parameter is for lookup spilling. A higher spilling factor (0.5 vs. 0.1)

gives better results – both for spilling during insert and lookup. Note how the effect

of spilling appears only for sample sizes larger than about 2M.

Table 6.2(a) shows mAP results for different forests. Using larger forests improves

the mAP up to 0.539. Again, increasing spilling from 0.1 to 0.6 improves the recogni-

tion rates (0.444 vs. 0.539). We also tried spilling values higher than 0.6. However,

the additional gain in precision was small, while the lookup time increased sub-

stantially. Table 6.2(b) compares these results to the results reported in [Philbin

et al., 2007] on the Oxford Set. Note that this comparison is in terms of a “bag

of words model”, before verification using multiple-view geometry. These results

are competitive with the state-of-the-art and lie in between hierarchical k-means

(HKM) [Nistér and Stewénius, 2006] and approximate k-means (AKM) [Philbin et

6.6. Evaluation on Large Datasets 188

(a)

Forest mAP Forest mAP
.1/.5 .5/.5 .1/.5 .5/.5 .6/.6

1 × 3M 0.307 0.339 1 × 7M 0.333 0.395 0.444
2 × 3M 0.343 0.380 2 × 7M 0.378 0.400 0.485
4 × 3M 0.380 0.412 4 × 7M 0.419 0.438 0.525
6 × 3M 0.391 0.418 6 × 7M 0.444 0.463 0.539

(b)

Oxford UK
Method [mAP] [Score]
HKM-1 [Nistér and Stewénius, 2006; Philbin et al., 2007] 0.439 3.16
HKM-4 [Nistér and Stewénius, 2006; Philbin et al., 2007] 0.353 3.29
AKM [Philbin et al., 2007] 0.618 3.45
This Work 0.539 3.34
Linear Search 0.672 3.53

(c)

Forest % 1st cor.
1 × 1M 46.8%
1 × 5M 49.4%
6 × 1M 70.8%
6 × 5M 83.5%
Linear 95.0%

Table 6.2: Evaluation of forests on Oxford set (a), comparison to other works on

Oxford and UK sets (b), results on Amazon set (c).

al., 2007]. Note that our best single tree result on the Oxford set (Table 6.2(a))

is higher than both HKM versions. As a baseline, we also report the result we

obtained using linear search. This result is still slightly better than all three meth-

ods, confirming that linear search constitutes indeed a suitable baseline – which

validates our assumptions from Section 6.4. The rightmost column of Table 6.2(b)

compares performance on the (full) UK set. Here, metric trees perform again better

than [Nistér and Stewénius, 2006] and only slightly worse than [Philbin et al., 2007].

With the Amazon set we introduce a new set and a new task. It is similar to the

CD retrieval application in [Nistér and Stewénius, 2006]. We envision a scenario

where users take picture of a DVD cover using the camera of their mobile phone

and after recognition may read critics about the DVD, buy it on-line etc. This is

different from the task on the Oxford set presented in [Philbin et al., 2007], where

retrieval is performed only for a query selected from images already in the database,

i.e. the feature vectors of the query images were in the dataset while the visual

vocabulary was created. Further, the task is to retrieve a correct item in the first

6.6. Evaluation on Large Datasets 189

(a)

Set Tree Time MB # feat DB # feat./q
1M 0.09s 80

Oxford 5M 0.12s 400 21 406 572 1925
10M 0.15s 800
1M 0.08s 80

UK 5M 0.12s 400 11 434 135 1515
10M 0.17s 800
1M 0.08s 80

Amazon 5M 0.09s 400 55 021 426 1370
10M 0.10s 800

(b)

Set Tree t/tree mAP %1st corr.
Oxford+DMOZ 5x3M 0.15s 0.215 -
UK+DMOZ 10x1M 0.14s 0.230 -
Amz.+DMOZ 10x1M 0.08s - 44.3%

Table 6.3: Lookup times and memory usage in MB for single trees (a), performance

metrics in DMOZ set (1 million images)(b).

position. Query images were taken with mobile phone cameras, under challenging

viewpoints, with specularities etc., and are very challenging compared to the data in
[Nistér and Stewénius, 2006; Philbin et al., 2007]. The database consists of about

52 000 covers with over 55 million features. Table 6.2(c) summarizes the results.

The spilling setup was 0.1/0.1 for all configurations. With a forest of 6 trees built

from 5 million sampled features, we reach a precision of 83% in the first position of

the ranked list. This is quite good, considering the difficult query images and the

“one shot” option for this task. Some example results for this task are shown in

Appendix A.

6.6.1 Computation Times and Scaling

We first report lookup times for the Oxford, UK, and Amazon sets in Table 6.3(a). It

shows the average lookup time per image using a single tree of the given size. We also

report the size of the database and the average number of features per query image.

To test the scalability of the tree method, we performed tests on the DMOZ noise set

with over one million images. The images from the original datasets were mixed into

this set before tree construction, and the same retrieval experiments were performed

again. Note that the data from DMOZ is extremely challenging, since it contains

truly random images, some of them with an excessive number of features, which

influence the “bag-of-words” voting procedure substantially. Recognition rates and

runtimes on this set are reported in Table 6.3(b). The effect of the noise set reduces

6.7. Related Work 190

recognition performance by about 50%. This is similar to the results in [Philbin et

al., 2007], where a reduction by about 40% was reported for a noise set consisting of

images retrieved from flickr. We assume that the higher loss here can be explained by

the more “distractive” content of the DMOZ set. In terms of speed, the metric trees

scale very well with a lookup time of about 0.1s per tree for over 300 million features.

In the worst case, where a forest of trees would have to be searched sequentially,

we would achieve retrieval in 1 second on 1 M images using a single PC. For many

practical applications, the tree search would however be parallelized.

Memory usage is influenced by several parameters. Each node requires: two unsigned

integers (each 4 bytes) to indicate the array position of the actual descriptor data for

the pivot. (No pointers are used since they consume 8 bytes on a 64-bit architecture).

Another two unsigned integers store the ids of the child nodes. Therefore, the size of

one node is ns = 16 bytes. A SURF descriptor vector can be described with ds = 64

bytes. The memory required for the tree is

memtree = in · (ns + ds) (6.4)

where in is the size of the random sample used to build the tree. With this, a tree

built from 1 million vectors requires 80MB using byte-valued SURF features. The

4th column of Table 6.3 shows the memory usage for the different tree examples.

The complete 6 × 7M forest for the best result obtained on the Oxford set would

require 3.36GB.

For the inverted files in the leaf nodes, storage depends strongly on the implemen-

tation, a straightforward approach with a leaf size ls (typically 4 bytes) and a total

of dn features in the database requires

memleaf list = dn · ls (6.5)

For a large dataset such as the Amazon or DMOZ set, this would add to the mem-

ory usage 220MB, or 1.2GB respectively. If insert spilling is used, these numbers

increase, since some points fall into multiple leaves. However, there is an extensive

body of work from document retrieval on how to store the lists more efficiently using

several kinds of compression. A good summary can be found in [Zobel and Moffat,

2006].

6.7 Related Work

Searching large databases of local visual features is a topic, which is receiving in-

creasing attention. The main body of work for that particular application has only

been carried out in the last few years, following the increased popularity of local

visual features for object recognition. Early works, such as [Lowe, 2004] proposed

6.8. Discussion and Conclusions 191

to use classic k-d trees coupled with the best-bin-first method and demonstrated

scalability on 100 000 SIFT descriptors. The well-known work [Sivic and Zisserman,

2003] by Sivic et al . suggested video retrieval based on clustering appearance features

into ”visual words” using k-means. Finding nearest neighbors for query features is

replaced by finding the closest cluster centroid (visual word), and indexing is solved

using inverted files of visual words. The rather simple k-means clustering method

seems to adapt to the structure of the feature space surprisingly well and results in

outstanding retrieval results on full feature movies. The main disadvantage of such

an approach is the scalability of the clustering process, especially for large numbers

of visual words or clusters. Thus, [Nistér and Stewénius, 2006] recently suggested a

hierarchical k-means approach and [Philbin et al., 2007] proposed an approximate

“flat” k-means. Both methods speed-up the k-means clustering process significantly

and therefore allow creating larger vocabularies. Both works also show significantly

improved recognition performance using larger vocabularies.

In addition to [Nistér and Stewénius, 2006; Philbin et al., 2007; Sivic and Zisserman,

2003] our evaluation relates to a large body of work dealing with (approximate) near-

est neighbor retrieval in high-dimensional vector spaces, independent of the specific

application or data-type. Not astonishingly, well-known approximate nearest neigh-

bor search methods such as k-d trees, metric trees and Locality Sensitive Hashing

(LSH) have been compared on several smaller datasets before, for instance in [Liu

et al., 2004]. However, these comparative evaluations have not been carried out on

databases of local image features, the characteristics of which have a strong influence

on design choices, as we could show in Section 6.5 of this chapter.

6.8 Discussion and Conclusions

In this chapter, we have evaluated methods for large-scale retrieval in databases of

local image features at several levels of the processing pipeline. Our first contribution

is the evaluation of some of the most popular (approximate) NN methods on current

benchmark data for large-scale object recognition. Our comparison of the methods

LSH, RBVs and metric trees has shown that among those methods, metric trees

offer the best speed-up. For the comparison between LSH and metric trees this

confirms results in [Liu et al., 2004] on smaller datasets. While [Goldstein et al.,

2005] showed that RBVs outperform LSH, we could show that at least for local

image features, spilling metric trees outperform both LSH and RBV. The cost for

this speed-up comes in a loss of true NNs retrieved, compared to linear NN search.

We thus evaluated the influence of this loss on the overall recognition performance

of a retrieval system with local image features. We could show that close to linear-

search performance can be reached with only 30− 50% of true NNs found. Further-

more, we demonstrated that retrieving k near neighbors (instead of the true NN)

6.8. Discussion and Conclusions 192

improves results further. We also evaluated different match-voting strategies to rank

images based on the matches between their local features. In our experiments, we

observed an optimum at k = 15 combined with singlecount voting. These findings

probably hold for most systems with local features. With this we demonstrated that

due to the redundancy offered by local features, choosing a less precise (in terms of

true NN) but faster method is beneficial for Internet-scale retrieval systems, since

the loss in precision can be absorbed with appropriate strategies on higher levels on

the system.

It is somewhat astonishing, that LSH did not perform as well as expected. One

reason which canot be excluded, that our implementation is not as optimized as

the one used by the authors of the original work. In any case however, LSH is a

method with many parameters to optimize, which makes evaluation on large datasets

difficult.

Due to their superior performance, metric trees were further evaluated and combined

to forests built from random subsets of the data. We showed that spilling helps

improve precision, and we introduced “insert spilling” for trees built from sampled

data. The results were validated across the largest currently available benchmark

data sets and on a new set of 50′000 DVD covers from amazon.com. Simulating

the data available on the Internet, a large-noise set of 1 million images from DMOZ

was used to test robustness against noise. The overall recognition rates of spilling

metric trees compete with recent clustering methods [Nistér and Stewénius, 2006;

Philbin et al., 2007] on benchmark data, while offering substantially faster index

build times not relying on an iterative clustering procedure.

7
Conclusions and Outlook

In this thesis we have investigated mining and retrieval in databases of visual data

at the object level. Building on state of the art local appearance methods for object

recognition, our main contributions are in the fields of mining feature configura-

tions as representatives for object classes, multimodal mining of objects and events

from community photo collections, and multimodal retrieval application for mobile

phones. Further contributions include a method for detection of text in natural

scenes and an evaluation of algorithms for scalable retrieval in databases of local

features.

7.1 Contributions

The main contributions of this thesis can be summarized as follows:

In Chapter 3 we applied itemset mining algorithms in the domain of visual data. We

adapted this simple, but effective class of methods to work with configurations of

local visual features. We demonstrated, ho the spatial arrangement of visual words

in semi-local neighborhoods can be encoded as transactions and subsequently mined

to identify repeating patterns of local feature configurations in the data. We showed,

how the detected patterns can be used to mine specific objects from video data. It

turned out to be helpful to base the creation of candidate neighborhoods on motion

segmentation. The same approach was extended to mine feature configurations

as evidence for the presence of instances of object classes. We could show that

the mining algorithms can be used to solve the task of learning frequent feature

configurations, relevant for a given object class. Conducting experiments on state of

the art benchmark data, we could demonstrate that the mined configurations show

better evidence for the presence of object class instances than single visual words.

Using the of the mined configurations in the implicit shape model [Leibe et al., 2008],

however, did not show the expected improvement compared to single features. In

summary, in spite of their simplicity, the itemset mining methods turned out to

7.1. Contributions 194

be suitable tools for the tasks of mining visual data. Compared to other methods

in the field of object class recognition, itemset mining will probably play out its

strengths only when applied to larger amounts of data, where a rough, but efficient

localization of candidates is required.

In Chapter 4 we took mining from the feature level to the object level. We intro-

duced a combination of methods, which allows for mining objects and events from

community photo collections on the Internet. The approach relies on geotagged

photos, which are clustered based on their similarities calculated from local feature

matches. Beyond the visual cues we extended our mining method to include multi-

modal cues such as the textual tags describing the photos. A classification based

on the meta-data of the clustered photos was used to divide clusters into objects

and events. Textual labels were learnt for the clusters efficiently, by using frequent

itemset mining in order to identify combinations of tags relevant for the cluster’s

contents. These textual labels were also used to crawl possibly relevant Wikipedia

articles from the Internet. Closing the loop to the visual modality, images in the

crawled articles were matched back to the mined clusters, to verify the hypothesized

assignment between article and photo cluster. Finally, we demonstrated, how the

mined photos can be used to derive object-level auto-annotations of objects such as

landmark buildings in holiday snaps. Experiments were conducted on hundreds of

thousand of photos downloaded from the Internet. Annotation quality on the mined

data was evaluated on manually labeled groundtruth of several hundred images. The

recognition rates reached with 70% a very satisfactory level on this challenging task.

In Chapter 5 we took an application-centric view of object recognition. We demon-

strated several prototypes for object recognition applications, with a special focus

on mobile devices. Several prototype implementations for mobile visual search on

the object-level were discussed and compared. In all cases the object recognition is

performed on the server-side, while client applications display the results. Namely,

we compared user-initiated recognition, real-time object recognition from streaming

video between client and server, and a hybrid approach, which releases recognition

when motion at the client-side is low. We demonstrated two sample applications

for such a mobile recognition system, namely a slide recognition system for meeting

rooms and a mobile tourist guide. The latter included several types of geographic in-

formation to restrict the search space. The mobile applications were complemented

with two applications for the desktop or the web, namely auto-annotation and 3D

reconstruction – both applications build directly on the results from Chapter 4.

Finally, we introduced a method to localize and read text in natural images, with

the goal to make such cues available to a retrieval system. The method follows the

Viola-Jones approach for face detection, but adapted to the problem of text de-

tection by using different feature sets. The recognition capabilities were evaluated

on challenging data of natural scenes, partly taken with mobile phone cameras. It

7.2. Perspectives 195

turned out that the localization method is very robust, but OCR on the extracted

text regions turned out to be more challenging than expected.

In Chapter 6 we evaluated methods which allow to scale object-level retrieval to

large amounts of data in the order of up to 1 million images. We investigated which

properties make nearest neighbor search for databases of local features different from

“general purpose” nearest neighbor search. We then evaluated three methods (LSH,

Redundant Bit Vectors, and Metric Trees) under that aspect on benchmark data. It

turned out that metric trees offered the best trade-off between precision, scalability

and ease of handling in this evaluation. Therefore we investigated improvements

to scale retrieval to larger amounts of data while maintaining precision. This was

achieved by combining several metric trees into forest, where each tree was built from

a random data sample. The quality of this approach was evaluated and compared

to state of the art methods on several benchmark datasets and showed competitive

precision and recall values for retrieval tasks of up to one million images.

7.2 Perspectives

The following perspectives for extension of the work presented in this thesis seem

worth investigating:

Itemset mining in visual data has potential for several extensions both at the

detail level and in a wider context. Detailed improvements include: the refinement

of the semi-local neighborhood. Here, building on rotation instead of scale could

potentially be more robust, since this cue is more robust in the underlying feature

detectors. The spatial tiling could be extended to a spatial pyramid, or multires-

olution histogram, respectively. This would allow capturing spatial constraints at

several levels. The calculation of semi-local neighborhood transactions could be

made very efficient by using an integral-histogram inspired approach. In a wider

context, massively parallel deployments as proposed recently in [Li et al., 2008a]

and tests on large datasets from the Internet could be interesting. In that context,

semi-supervised recognition systems would be particularly exciting. It might be

worthwile to revive the recently somewhat neglected concept of relevance feedback,

but using local features instead of global ones. Simple methods such as itemset

mining could then potentially be used to learn structural patterns of features for a

given query on-line.

Mining objects and events from community photo collections has enormous

further potential. The amount of (geotagged) photos available is growing constantly

and rapidly, which allows crawling and processing of enormous amounts of data and

7.2. Perspectives 196

consequently identifying many more objects and events, also in the “long tail” of

data. Especially the labeling of the identified clusters could be extended, using

multimodal classification methods. Interesting directions of future research could

be scene classification (indoor/outdoor/day/night/weather etc.) or the analysis of

events at a visual and textual level, e.g . events such as weddings could potentially

be learned based on visual cues. Auto-annotation on the object level offers great

opportunities for exciting applications such as auto-tagging of holiday snaps for web-

and desktop applications. These annotations could be improved by investigating the

scene geometry in more detail and based on that derive refined annotations at a high

level of detail, e.g . by labeling certain parts of objects individually. Combinations

with other lines of work such as 3D reconstruction [Snavely et al., 2006] offer further

potential. Finally, transferring the concept to other databases on the Internet, e.g .

images of products would be fascinating, too.

Multimodal retrieval applications from mobile devices can be refined in many

ways. Combinations with augmented reality seem particularly fruitful, considering

the rapidly improving capabilities of mobile devices. In our experience, a combined

approach of server-side recognition and client-side tracking or augmentation seems

the most promising. Inclusion of multimodal cues, such as geographic location will

be crucial for real world deployments. A combination with databases as the ones

mined with the work presented in Chapter 4 is a natural next step. The work on text

detection showed, that even a very well researched field such as OCR has further

potential for improvement and novel applications, when applying it to natural scenes

instead of scanned documents.

Scalable retrieval for local features is a topic which receives a lot of attention

currently. Focussing on the special characteristics introduced by building on local

features instead of global ones seems promising. The ultimate indexing method

would probably combine appearance of the features and their geometric arrangement

to achieve both better precision and scalability. For Internet Vision applications the

combinations of database mining as in Chapter 4 an scalable indexing methods is

very promising. The information collected on the objects (multiple views etc.) could

be helpful in improving visual vocabularies.

In summary, closing the circle to the introductory statements of this thesis, we

investigated several directions in which computer vision methods allow for organizing

and searching repositories of visual data. The combination of mined specific objects,

cues for the presence of instances of object classes, and detected text will allow for

creating systems, which decompose and label many common scenes captured in

photos. The trends outlined in the introduction of this thesis are now tackled in

the rising research field “Internet Vision”, which offers both great challenges and

7.2. Perspectives 197

opportunities for further research and applications along some of the directions

touched in this dissertation.

A
Amazon Example Results

199

B00004RYWT 0

Analyze This

2, 1.50

B00000JGPE, 11.000

Analyze This

B00004I9Q0, 10.000

Analyze This

B00004RYWI, 4.000

Revenge of Musketeers

B0007CR7HA, 4.000

Cinema Colossal Box III

SAGA

B000GTJSQC, 3.000

Roger Corman s Cult Classics

Jack Nichol

B00005603H 0

American Beauty

0, 0.00

B00005MKXC, 3.000

Smiles of a Summer Night

B000077VOI, 3.000

Ehre zu Fliegen

3898857700, 2.000

Ranma 1 2 Big Trouble in

Nekonron China

B000NKH866, 2.000

Baywatch komplette 7. Sta el

B000G1R4R0, 2.000

Ace Ventura Deluxe Double

Feature

B00005603H 1

American Beauty

0, 0.00

B000GCFJTY, 3.000

Nacht lebenden Toten

Ungeschnittene Fass

B000GIXLWU, 3.000

Sharpe s Challenge

B000244G9K, 3.000

Wisecracks

B00009QUH5, 2.000

I Love You to Death

B00008JNEA, 2.000

Marie Jo et ses 2 amours

B00005KG45 0

Face O

0, 0.00

B0002M70FE, 2.000

Operation Dance Sensation

B000OCXJZ2, 2.000

Hulk

B000HT33JY, 2.000

Death Fighter Protokoll

B000A0GP5Y, 2.000

Longest Yard

B00069FEOW, 2.000

Mann wird gejagt

B00005MFO3 0

Me Myself & Irene

0, 0.00

B000F2C6SC, 2.000

Another Day in Paradise

B000BCINW4, 2.000

retsaMlemmiHhcierginöK

and Commander

B000AC7P5Q, 2.000

Anthropophagus Grim Reaper

B000O3HXRG, 2.000

Le Coeur des Hommes

B000HCO76O, 2.000

Navy CIS Season 2 Vol. 1

B00005N96U 0

Mr. Bean

1, 1.00

B00005N96U, 11.000

Mr. Bean

B00005RISF, 2.000

Bud Spencer & Terence Hill

Box

B00005LIRC, 2.000

Fury

B00008PBZZ, 2.000

Dances Wolves Extended Cut

B0002CHIJW, 2.000

I Spit On Your Grave

B00005UL69 0

Groundhog Day

4, 2.33

B00005UL69, 12.000

Groundhog Day

B00007149X, 6.000

Groundhog Day Stripes

B00005U8EM, 6.000

Groundhog Day

B00004VXXA, 5.000

Groundhog Day

B00006G8JI, 2.000

Big Momma s House Me

Myself & Irene

B000067FYV 0

Rat Race nackte Wahnsinn

1, 1.00

B000067FYV, 6.000

Rat Race nackte Wahnsinn

B00008G8A6, 3.000

Arma Letal 5

B00005LAYW, 3.000

Nur aus Liebe

B000075ASD, 2.000

Derailed Terror im Zug

B000F1IIQ2, 2.000

M*A*S*H Season One

Episode 1 & 2

Figure A.1: Amazon Example Results (I). The leftmost image on each line is the

query image, the remaining images are results, sorted by rank from left to right.

200

B000069DN0 0

reieGrüfnesserF

0, 0.00

B00005B1XU, 4.000

Hi Yo Silver

B000G6H538, 4.000

Romulus und Remus

B0002IQLOE, 3.000

Secret of Shaolin Kung Fu

a.k.a. Invinci

B0000E6EJ8, 3.000

Natural Born Killers

B0007VZ8SQ, 3.000

Brothers Grimm Cinderella

King Thrushbea

B000088NQR 0

Ringu

1, 1.00

B000089QE4, 10.000

Ring

B000088NQR, 10.000

Ringu

B000777HTI, 5.000

Ring Collector s Set

B000777HSY, 5.000

Ring

B0000A03KH, 4.000

Moon of Wolf

B00008JMG3 0

Ring

5, 3.50

B000G1TP0Y, 7.000

Ring

B000FTWU18, 7.000

Ring

B00005JLTK, 6.000

Ring

B000777HTI, 6.000

Ring Collector s Set

B000777HSY, 6.000

Ring

B00008VDPO 0

Road to Perdition

0, 0.00

B0002MGYTC, 5.000

Cobra nero

B00000JL4L, 4.000

X Movie

B0002CHJ0K, 4.000

Demon Lord Dante Dante

Agonizes

B0002DB0HW, 3.000

El Macho Bionico

B00030N9RI, 3.000

Inside Okinawan Goju Chinen

Kumite d

B00008XF7Z 0

laicepSreztäwhcsmmuD

Edition

1, 1.00

B00008XF7Z, 5.000

laicepSreztäwhcsmmuD

Edition

B000OFF9M0, 4.000

Deluxe Combo Platter

B000098ZT0, 4.000

Fear in Night

B000LPS35I, 4.000

Television s Funniest Foul Ups

B000EOUK66, 3.000

tmaSsuaellöH2MM8

B00009ZY9E 0

O ce Complete First Series

1, 1.00

B00009ZY9E, 12.000

O ce Complete First Series

B0001WHUFK, 5.000

O ce

B00005OKQK, 3.000

Jabberwocky

B000ION244, 3.000

Amsterdam Connection

Bloody Fight

B0001DI55S, 3.000

O ce

B0000AISTX 0

O Brother Where Art Thou?

Mississippi Od

1, 1.00

B0000AISTX, 4.000

O Brother Where Art Thou?

Mississippi Od

B000E0LCFS, 4.000

Ley Lines

B00004VYQT, 3.000

Jane Austen s Ma!a

B000BZFPCW, 3.000

Western von gestern Fuzzys

wilde Abenteu

B0000584ZH, 3.000

Nurse Betty

B0000C0F44 0

Open Hearts

0, 0.00

B00030N9R8, 3.000

Inside Okinawan Goju Chinen

Bunkai Oyo #

B000DZ6VPU, 3.000

Self Defense For Women

B00005B73P, 3.000

Relative Values

6305617791, 3.000

Daddy Long Legs

B00006L9VV, 3.000

Invitation to Wedding

Figure A.2: Amazon Example Results (II).The leftmost image on each line is the

query image, the remaining images are results, sorted by rank from left to right.

Bibliography

[Abowd, 1999] G. Abowd. Classroom 2000: An experiment with the instrumenta-

tion of a living educational environment. In IBM Systems Journal, 1999.

[Adelmann et al., 2006] R. Adelmann, M. Langheinrich, and C. Floerkemeier. A

toolkit for bar-code-recognition and -resolving on camera phones – jump starting

the internet of things. In Workshop Mobile and Embedded Interactive Systems

(MEIS’06) at Informatik 2006, 2006.

[Agarwal and Roth, 2002] Shivani Agarwal and Dan Roth. Learning a sparse rep-

resentation for object detection. In ECCV02, 2002.

[Agarwal et al., 2004] Shivani Agarwal, Aatif Awan, and Dan Roth. Learning to

detect objects in images via a sparse, part-based representation. In Trans. PAMI,

2004.

[Aggarwal and Yu, 1998] C. C. Aggarwal and P. S. Yu. A new framework for item-

set generation. In PODS ’98: Proceedings of the seventeenth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems, 1998.

[Agrawal et al., 1993] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami.

Mining association rules between sets of items in large databases. In SIGMOD’93,

1993.

[Amir et al., 2001] A. Amir, G. Ashour, and S. Srinivasan. Toward automatic real

time preparation of online video proceedings for conference talks and presenta-

tions. In Hawaii Int. Conf. on System Sciences, 2001.

[Antonie et al., 2003] M. Antonie, O. Zäıane, and A. Coman. Associative classi-

fiers for medical images. In Lecture Notes in A.I. 2797, Mining Multimedia and

Complex Data, 2003.

[Aurnhammer et al., 2006] M. Aurnhammer, P. Hanappe, and L. Steels. Integrating

collaborative tagging and emergent semantics for image retrieval. In Collaborative

Web Tagging Workshop (WWW’06), 2006.

[Ballagas et al., 2005] Rafael Ballagas, Michael Rohs, and Jennifer G. Sheridan. Mo-

bile phones as pointing devices. In PERMID ’05, 2005.

Bibliography 202

[Ballard, 1981] D. H. Ballard. Generalizing the hough transform to detect arbitrary

shapes. Pattern Recognition, 13(2):111–122, 1981.

[Bay et al., 2006a] H. Bay, B. Fasel, and L. Van Gool. Interactive museum guide:

Fast and robust recognition of museum objects. In Proc. Intern. Workshop on

Mobile Vision, 2006.

[Bay et al., 2006b] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust

features. In ECCV’06, 2006.

[Benzécri, 1982] J.P. Benzécri. Construction d’une classification ascendante

hiérarchique par la recherche en châıne des voisins réciproques. Cahiers de

l’Analyse des Données, 7(2):209–218, 1982.

[Borenstein and Ullman, 2002] E. Borenstein and S. Ullman. Class-specific, top-

down segmentation. In ECCV02, 2002.

[Borgelt and Berthold, 2002] Christian Borgelt and Michael R. Berthold. Mining

molecular fragments: Finding relevant substructures of molecules. ICDM, 00:51,

2002.

[Borgelt, 2003] Christian Borgelt. Efficient implementations of apriori and eclat. In

Workshop of Frequent Item Set Mining Implementations (FIMI 2003), 2003.

[Borgelt, 2005] C. Borgelt. An implementation of the fp-growth algorithm. In

OSDM’05, 2005.

[Boring et al., 2007] Sebastian Boring, Manuela Altendorfer, Gregor Broll, Otmar

Hilliges, and Andreas Butz. Shoot & copy: Phonecam-based information transfer

from public displays onto mobile phones. In International Conference on Mobile

Technology, Applications and Systems, 2007.

[Bosch et al., 2006] A. Bosch, A. Zisserman, and X. Munoz. Scene classification via

pLSA. In ECCV’06, 2006.

[Breu and Müller, 2008] M. Breu and M. Müller. A motion-detection based user

interface for mobile visual search. Semester Project, 2008.

[Brin et al., 1997] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset

counting and implication rules for market basket data. SIGMOD Rec., 26(2):255–

264, 1997.

[Burl et al., 1998] M. C. Burl, M. Weber, and P. Perona. A probabilistic approach

to object recognition using local photometry and global geometry. In ECC98,

1998.

[Carletta et al. (17 authors), 2005] J. Carletta et al. (17 authors). The ami meet-

ing corpus: A pre-announcement. In MLMI, 2005.

[Carson et al., 1999] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and

J. Malik. Blobworld: A system for region-based image indexing and retrieval. In

Third International Conference on Visual Information Systems, 1999.

Bibliography 203

[Chen and Yuille, 2004] Xiangrong Chen and A.L. Yuille. Detecting and reading

text in natural scenes. In CVPR04, 2004.

[Chum and Zisserman, 2007] O. Chum and A. Zisserman. An exemplar model for

learning object classes. In CVPR07, 2007.

[Ciaccia et al., 1997] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An

efficient access method for similarity search in metric spaces. In VLDB ’97, 1997.

[Cooley et al., 1993] R. Cooley, J. Srivastava, and B. Mobasher. Web mining: In-

formation and pattern discovery on the world wide web. In ICTAI, 1993.

[Cox et al., 2000] Ingemar J. Cox, Matthew L. Miller, Thomas P. Minka, Thomas

Papathomas, and Peter N. Yianilos. The bayesian image retrieval system,

pichunter: Theory, implementation and psychophysical experiments. IEEE Trans-

actions on Image Processing (to appear), 9(1):20–37, January 2000.

[Croft and Harper, 1997] W. B. Croft and D. J. Harper. Using probabilistic models

of document retrieval without relevance information. Journal of Documentation,

35, 1997.

[Dalal and Triggs, 2005] N. Dalal and B. Triggs. Histograms of oriented gradients

for human detection. In CVPR’05, 2005.

[Dance et al., 2004] C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka.

Visual categorization with bags of keypoints. In ECCV SLCV’04, 2004.

[Datar et al., 2004] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mir-

rokni. Locality-sensitive hashing scheme based on p-stable distributions. In SCG

’04, 2004.

[Davis, 2001] J.W. Davis. Hierarchical motion history images for recognizing human

motion. In Proceedings of IEEE Workshop on Detection and Recognition of Events

in Video, 2001, pages 39–46, 2001.

[de Rham, 1980] C. de Rham. La classification hiérarchique ascendante selon la

méthode des voisins r éciproques. Cahiers de l’Analyse des Données, 5(2):135–

144, 1980.

[Dufour et al., 2002] R.M. Dufour, E.L. Miller, and N.P. Galatsanos. Template

matching based object recognition with unknown geometric parameters. Image

Processing, IEEE Transactions on, 11(12):1385–1396, Dec 2002.

[Edwards, 2004] L. Edwards. Developing Series 60 Applications. Addison Wesley,

2004.

[Elkan, 2003] C. Elkan. Using the triangle inequality to accelerate k-means. In

ICML’03, pages 147–253, 2003.

[Farnstrom et al., 2000] Fredrik Farnstrom, James Lewis, , and Charles Elkan. Scal-

ability for clustering algorithms revisited. SIGKDD Explorations, 2(1):51—57,

2000.

Bibliography 204

[Fei-Fei et al., 2003] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian approach to

unsupervised one-shot learning of object categories. In ECCV03, 2003.

[Fei-Fei et al., 2004] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual

models from few training examples: an approach tested on 101 object categories.

In CVPR WGMBV, 2004.

[Feltzenswalb and Hutenlocher, 2005] P. Feltzenswalb and D. Hutenlocher. Picto-

rial structures for object recognition. IJCV, 61(1), 2005.

[Fergus et al., 2003] R. Fergus, P. Perona, and A. Zisserman. Object class recogni-

tion by unsupervised scale-invariant learning. In CVPR’03, 2003.

[Fergus et al., 2005] R. Fergus, P. Perona, and A. Zisserman. A sparse object cate-

gory model for efficient learning and exhaustive recognition. In CVPR’05, 2005.

[Ferrari et al., 2006] V. Ferrari, T. Tuytelaars, and L. Van Gool. Object detection

by contour segment networks. In ECCV’06, 2006.

[Fischler and Bolles., 1981] M. A. Fischler and R. C. Bolles. Random sample con-

sensus: A paradigm for model fitting with applications to image analysis and

automated cartography. In Comm. of the ACM, 1981.

[Flickner et al., 1995] Myron Flickner, Harpreet Sawhney, Wayne Niblack,

Jonathan Ashley, Qian Huang, Byron Dom, Monika Gorkani, Jim Hafner, De-

nis Lee, Dragutin Petković, David Steele, and Peter Yanker. Query by image and

video content: The qbic system. IEEE Computer, 28(9):23–32, September 1995.

[Föckler et al., 2005] Paul Föckler, Thomas Zeidler, Benjamin Brombach, Erich

Bruns, and Oliver Bimber. Phoneguide: museum guidance supported by on-

device object recognition on mobile phones. In MUM ’05: Proceedings of the 4th

international conference on Mobile and ubiquitous multimedia, 2005.

[Freund and Schapire, 1997] Y. Freund and R Schapire. A decision-theoretic gen-

eralization of on-line learning and an application to boosting. J. Comput. Syst.

Sci., 55(1):119–139, 1997.

[Fritz et al., 2005] M. Fritz, B. Leibe, and B. Caputoand B. Schiele. Integrating

representative and discriminant models for object category detection. In ICCV’05,

2005.

[Fuhrmann and Harbaum, 2003] T. Fuhrmann and T. Harbaum. Using bluetooth

for informationally enhanced environments. In Proceedings of the IADIS Interna-

tional Conference e-Society 2003, 2003.

[Gionis et al., 1999] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity

search in high dimensions via hashing. In VLDB, 1999.

[Goesele et al., 2007] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. Seitz.

Multi-view stereo for community photo collections. In ICCV’07, 2007.

Bibliography 205

[Goldstein et al., 2005] Jonathan Goldstein, John C. Platt, and Christopher J.C.

Burges. Redundant bit vectors for quickly searching high-dimensional regions. In

Det. and Stat. Methods in Machine Learning, 2005.

[Griffin et al., 2007] G. Griffin, A.D. Holub, and P. Perona. The caltech 256. Caltech

Technical Report, 2007.

[Grimson and Lozano-Pérez, 1987] W. E. L. Grimson and T. Lozano-Pérez. Local-

izing overlapping parts by searching the interpretation tree. IEEE Trans. Pattern

Anal. Mach. Intell., 9(4):469–482, 1987.

[Gugl, 2007] S. Gugl. Object class recognition by frequent graph mining. Master’s

thesis, Computer Vision Institute, ETH Zurich, 2007.

[Han et al., 2000] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns

without candidate generation. In SIGMOD ’00: Proceedings of the 2000 ACM

SIGMOD international conference on Management of data, 2000.

[Hand et al., 2001] D.J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of

Data Mining. MIT Press, 2001.

[Hand, 2001] D.J. Hand. Principles of Data Mining. MIT Press, 2001.

[Harris and Stephens, 1988] C. Harris and M. Stephens. A combined corner and

edge detector. In Proceedings of the 4th Alvey Vision Conference, 1988.

[Hartley and Zisserman, 2004] R. Hartley and A. Zisserman. Multiple View Geom-

etry in Computer Vision. Cambridge Univ. Press, 2004.

[Hays and Efros, 2008] J. Hays and A. A. Efros. Im2gps: estimating geographic

information from a single image. In CVPR08, 2008.

[Holt and Chun, 1999] John D. Holt and Soon Myoung Chun. Efficient mining of

association rules in text databases. In ACM CIKM, 1999.

[Inokuchi et al., 2003] A. Inokuchi, T. Washio, and H. Motoda. Complete mining of

frequent patterns from graphs: Mining graph data. Machine Learning, 50:321—

354, 2003.

[Jaffe et al., 2006] A. Jaffe, M. Naaman, T. Tassa, and M. Davis. Generating sum-

maries and visualization for large collections of geo-referenced photographs. In

MIR’06, 2006.

[Jain and Dubes, 1988] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data.

Prentice Hall, 1988.

[Jecker and Knecht, 2008] Raphael Jecker and Benjamin Knecht. Real-time server-

side object recognition for mobile devices. Semester Project, 2008.

[Jung et al., 2004] Keechul Jung, Kwang In Kim, and Anil K. Jain. Text informa-

tion extraction in images and video: a survey. Pattern Recognition, 37(5):977–997,

2004.

Bibliography 206

[Kamvar and Baluja, 2006] M. Kamvar and S. Baluja. A large scale study of wireless

search behavior: Google mobile search. In CHI ’06: Proceedings of the SIGCHI

conference on Human Factors in computing systems, 2006.

[Kaufman and Rousseeuw, 1990] L. Kaufman and P. Rousseeuw. Finding Groups

in Data: An Introduction to Cluster Analysis. Wiley, 1990.

[Kuramochi and Karypis, 2001] M. Kuramochi and G. Karypis. Frequent subgraph

discovery. In ICDM’01: 1st IEEE Conf. Data Mining, pages 313–320, 2001.

[Kuramochi and Karypis, 2004] M. Kuramochi and G. Karypis. An efficient algo-

rithm for discovering frequent subgraphs. IEEE Transactions on Knowledge and

Data Engineering, 16(9):1038–1051, 2004.

[Lazebnik et al., 2004] S. Lazebnik, C. Schmid, and J. Ponce. Semi-local affine parts

for object recognition. In BMVC’04, 2004.

[Lazebnik et al., 2006] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of fea-

tures: Spatial pyramid matching for recognizing natural scene categories. In

CVPR06, 2006.

[Leibe and Schiele, 2003] B. Leibe and B. Schiele. Interleaved object categorization

and segmentation. In BMVC’03, 2003.

[Leibe et al., 2005] Bastian Leibe, Edgar Seemann, and Bernt Schiele. Pedestrian

detection in crowded scenes. In CVPR’05, 2005.

[Leibe et al., 2008] Bastian Leibe, Ales Leonardis, and Bernt Schiele. Robust object

detection with interleaved categorization and segmentation. IJCV Special Issue

on Learning for Vision and Vision for Learning, 2008.

[Leung and Malik, 2001] Thomas Leung and Jitendra Malik. Representing and rec-

ognizing the visual appearance of materials using three-dimensional textons. In-

ternational Journal of Computer Vision, 43(1):29–44, 2001.

[Levenshtein, 1966] V. I. Levenshtein. Binary codes capable of correcting deletions,

insertions, and reversals. Soviet Physics Doklady, 10:707–?710, 1966.

[Lew et al., 2006] S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based mul-

timedia information retrieval: State of the art and challenges. In ACM Trans.

Multimedia Comput. Commun. Appl., 2006.

[Lewis et al., 2007] A. Lewis, M. Purvis, J. Sambells, and C. Turner. Beginning

Google Maps Applications with Rails and Ajax. Apress, 2007.

[Li et al., 2008a] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang. Pfp:

Parallel fp-growth for query recommendation. In ACM Recommendation Systems

08, 2008.

[Li et al., 2008b] X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm. Model-

ing and recognition of landmark image collections using iconic scene graphs. In

ECCV08, 2008.

Bibliography 207

[Liu et al., 2004] T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of

practical approximate nearest neighbor algorithms. In NIPS’04, 2004.

[Liu et al., 2007] T. Liu, C. Rosenberg, and H. A. Rowley. Clustering billions of

images with large scale nearest neighbor search. In WACV ’07, 2007.

[Liu, 2006] Ting Liu. Fast nonparametric machine learning algorithms for high-

dimensional massive data and applications. In PhD Thesis, 2006.

[Lowe, 1991] David G. Lowe. Fitting parameterized three-dimensional models to

images. PAMI, 13(5):441–450, 1991.

[Lowe, 1999] David G. Lowe. Object recognition from local scale-invariant features.

In ICCV99, 1999.

[Lowe, 2004] D. Lowe. Distinctive image features from scale-invariant keypoints.

IJCV, 60(2), 2004.

[Lu and Tan, 2007] S. Lu and C. L. Tan. Binarization of badly illuminated docu-

ment images through shading estimation and compensation. In Ninth Interna-

tional Conference on Document Analysis and Recognition, 2007. ICDAR 2007.,

2007.

[Lucas, 2005] S. M. Lucas. Text locating competition results. In Eighth Interna-

tional Conference on Document Analysis and Recognition (ICDAR’05), 2005.

[Ma and Manjunath, 1999] Wei-Ying Ma and B. S. Manjunath. Netra: A toolbox

for navigating large image databases. Multimedia Systems, 7(3):184–198, 1999.

[MacQueen, 1967] J. B. MacQueen. Some methods for classification and analysis of

multivariate observations. In University of California Press, editor, Proceedings

of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,

volume 1, pages 281–297, 1967.

[Magagna, 2008] Fabio Magagna. Unsupervised 3d reconstruction from images

mined in community photo collections. Master’s thesis, ETH Zurich, Computer

Vision Lab, 2008.

[Matas et al., 2002] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-

baseline stereo from maximally stable extremal regions. In BMVC’02, 2002.

[Mathes,] Adam Mathes. Folksonomies-cooperative classification and communica-

tion through shared metadata. Website (visited 15.6.2008).

[Metwally et al., 2005] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.

Using association rules for fraud detection in web advertising networks. In VLDB

’05: Proceedings of the 31st international conference on Very large data bases,

2005.

[Mikolajczyk and Schmid, 2004a] K. Mikolajczyk and C. Schmid. Scale and affine

invariant interest point detectors. IJCV, 60(1), 2004.

Bibliography 208

[Mikolajczyk and Schmid, 2004b] K. Mikolajczyk and C. Schmid. Scale and affine

invariant interest point detectors. IJCV, 60:63–86, 1 2004.

[Mikolajczyk and Schmid, 2005] K. Mikolajczyk and C. Schmid. A performance

evaluation of local descriptors. PAMI, 27(10):1615–1630, 2005.

[Mikolajczyk et al., 2005] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool. A comparison of affine

region detectors. IJCV, 65:43–72, 2005.

[Minogue and Gondry, 2002] K. Minogue and M. Gondry. Come into my world,

2002.

[Minogue and Shadforth, 2001] K. Minogue and D. Shadforth. Can’t get you out of

my head, 2001.

[Moore, 2000] Andrew W. Moore. The anchors hierarchy: Using the triangle in-

equality to survive high dimensional data. In Conference on Uncertainty in Arti-

ficial Intelligence, 2000.

[Moosmann et al., 2006] F. Moosmann, B. Triggs, and F. Jurie. Randomized clus-

tering forests for building fast and discriminative visual vocabularies. In NIPS’06,

2006.

[Murase and Nayar, 1995] Hiroshi Murase and Shree K. Nayar. Visual learning and

recognition of 3-d objects from appearance. IJCV, 14(1):5–24, 1995.

[Niblack, 1999] Wayne Niblack. Slidefinder: A tool for browsing presentation graph-

ics using content-based retrieval. In CBAIVL ’99, 1999.

[Nistér and Stewénius, 2006] David Nistér and Henrik Stewénius. Scalable recogni-

tion with a vocabulary tree. In CVPR’06, 2006.

[Nowozin et al., 2007] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir.

Weighted substructure mining for image analysis. In CVPR07, pages 1–8, June

2007.

[Oliva and Torralba, 2001] Aude Oliva and Antonio Torralba. Modeling the shape

of the scene: A holistic representation of the spatial envelope. Int. J. Comput.

Vision, 42(3):145–175, 2001.

[Omiecinski, 2003] Edward R. Omiecinski. Alternative interest measures for mining

associations in databases. IEEE Transactions on Knowledge and Data Engineer-

ing, 15(1):57–69, 2003.

[Opelt et al., 2003] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Generic object

recognition with boosting. In Trans. PAMI, 2003.

[Opelt et al., 2006] A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of

object detectors using a visual alphabet. In CVPR’06, 2006.

Bibliography 209

[Ordonez and Omiecinski, 1999] Carlos Ordonez and Edward Omiecinski. Discov-

ering association rules based on image content. In ADL ’99: Proceedings of the

IEEE Forum on Research and Technology Advances in Digital Libraries, 1999.

[Osian and Van Gool, 2004] M. Osian and L. Van Gool. Video shot characteriza-

tion. Machine Vision Applications, 15:172–177, 3 2004.

[Ozuysal et al., 2007] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition

in ten lines of code. In CVPR’07, 2007.

[Paletta et al., 2006] L. Paletta, G. Fritz, C. Seifert, P. Luley, and A. Almer. A

mobile vision service for multimedia tourist applications in urban environments.

In IEEE Intel. Transp. Syst. Conf., 2006.

[Pelleg and Moore, 1999] D. Pelleg and A. Moore. Accelerating exact k -means

algorithms with geometric reasoning. In Knowledge Discovery and Data Mining

KDD’99, 1999.

[Pelleg and Moore, 2000] Dan Pelleg and Andrew Moore. X-means: Extending k-

means with efficient estimation of the number of clusters. In ICML00, 2000.

[Philbin et al., 2007] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.

Object retrieval with large vocabularies and fast spatial matching. In CVPR’07,

2007.

[Piatetsky-Shapiro, 1991] G. Piatetsky-Shapiro. Discovery, analysis, and presenta-

tion of strong rules. In G. Piatetsky-Shapiro and W.J. Frawley, editors, Knowledge

Discovery in Databases. AAAI/MIT Press, 1991.

[Quack et al., 2004] Till Quack, Ullrich Mönich, Lars Thiele, and B. S. Manjunath.

Cortina: a system for large-scale, content-based web image retrieval. In Pro-

ceedings of the 12th annual ACM international conference on Multimedia, pages

508–511. ACM, 2004.

[Quack et al., 2008] T. Quack, H. Bay, and L. Van Gool. Object recognition for the

internet of things. In Internet of Things 2008, 2008.

[Quinlan, 1986] J.R. Quinlan. Induction of decision trees. Mach. Learn., 1:81–106,

1986.

[Renold, 2008] M. Renold. Detecting and reading text in natural scenes. Master’s

thesis, Computer Vision Lab, ETH Zurich, May 2008.

[Rohs and Gfeller, 2004] M. Rohs and B. Gfeller. Using camera-equipped mobile

phones for interacting with real-world objects. In Advances in Pervasive Com-

puting, Austrian Computer Society (OCG), 2004.

[Rui and Huang, 1999] Y. Rui and T. S. Huang. A novel relevance feedback tech-

nique in image retrieval. In Proceedings of 7th ACM International Conference on

Multimedia (MM), 1999.

Bibliography 210

[Salton and McGill, 1986] Gerard Salton and Michael J. McGill. Introduction to

Modern Information Retrieval. McGraw-Hill, 1986.

[Sandvig et al., 2007] J. J. Sandvig, Bamshad Mobasher, and Robin Burke. Ro-

bustness of collaborative recommendation based on association rule mining. In

RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems,

2007.

[Scheiner and Schwarz, 2007] D. Scheiner and R. Schwarz. High performance object

recognition. Master’s thesis, ETH Zurich, Computer Vision Lab, 2007.

[Schmid and Mohr, 1997] C. Schmid and R. Mohr. Local grayvalue invariants for

image retrieval. PAMI, 19(5):530–535, 1997.

[Shotton et al., 2006] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-

boost: Joint appearance, shape and context modeling for multi-class object recog-

nition and segmentation. In ECCV’06, 2006.

[Silverstein et al., 1998] C. Silverstein, S. Brin, and R. Motwani. Beyond market

baskets: Generalizing association rules to dependence rules. Data Min. Knowl.

Discov., 2(1):39–68, 1998.

[Simon et al., 2007] I. Simon, N. Snavely, and S. M. Seitz. Scene summarization for

online image collections. In ICCV’07, 2007.

[Singhal et al., 1996] A. Singhal, C. Buckley, and M. Mitra. Pivoted document

length normalization. In SIGIR ’96, 1996.

[Sivic and Zisserman, 2003] J. Sivic and A. Zisserman. Video google: a text retrieval

approach to object matching in videos. In ICCV’03, 2003.

[Sivic and Zisserman, 2004] Josef Sivic and Andrew Zisserman. Video data mining

using configurations of viewpoint invariant regions. In CVPR’04, 2004.

[Sivic et al., 2005] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Free-

man . Discovering object categories in image collections. In CVPR05, 2005.

[Smith, 2004] G. Smith. Folksonomy: social classification. Website (visited

15.6.2008), 8 2004.

[Snavely et al., 2006] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: Ex-

ploring photo collections in 3d. ACM Trans. on Graphics, 25(3), 2006.

[Spirito et al., 2001] M.A. Spirito, S. Pöykkö, and O. Knuuttila. Experimental per-

formance of methods to estimate the location of legacy handsets in gsm. In IEEE

Veh. Technol. Conf., 2001, 2001.

[Swain and Ballard, 1991] Michael J. Swain and Dana H. Ballard. Color indexing.

IJCV, 7(1):11–32, 1991.

[Takacs et al., 2008] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W-C.

Chen;, T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod. Outdoors aug-

mented reality on mobile phone using loxel-based visual feature organization. In

Bibliography 211

ACM International Conference on Multimedia Information Retrieval (MIR’08),

2008.

[Tan et al., 2002] P. Tan, V. Kumar, and J. Srivastava. Selecting the right interest-

ingness measure for association patterns. In KDD ’02: Proceedings of the eighth

ACM SIGKDD international conference on Knowledge discovery and data mining,

2002.

[Tesic et al., 2003] Jelena Tesic, Shawn Newsam, and Bangalore S. Manjunath. Min-

ing image datasets using perceptual association rules. In SIAM Sixth Workshop

on Mining Scientific and Engineering Datasets, 2003.

[Torralba et al., 2008] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large

image databases for recognition. In CVPR08, June 2008.

[Tuytelaars and Mikolajczyk, 2008] T. Tuytelaars and K. Mikolajczyk. Local invari-

ant feature detectors: A survey. Foundations and Trends in Computer Graphics

and Vision, 3(3):177–280, 2008.

[Uhlmann, 1991] Jeffrey K. Uhlmann. Satisfying general proximity/similarity

queries with metric trees. In Inf. Proc. Lett, 1991.

[Ulrich, 2006] Tamara Ulrich. Object recognition on a mobile phone: Part ii.

Semester Project, 2006.

[Valiant, 1984] L. G. Valiant. A theory of the learnable. Communications of the

ACM, 27, 1984.

[Various, 2005] Various. The pascal object recognition database collection (2005),

2005. www.pascal-network.org/challenges/VOC.

[Vergauwen and Van Gool, 2006] M. Vergauwen and L. Van Gool. Web-based 3d

reconstruction service. MVA, 17(6):411–426, 2006.

[Vinciarelli and Odobez, 2006] A. Vinciarelli and J. Odobez. Application of infor-

mation retrieval technologies to presentation slides. IEEE Transactions on Mul-

timedia, 8(5):981–995, 2006.

[Viola and Jones, 2001a] P. Viola and M. Jones. Fast and robust classification using

asymmetric adaboost and a detector cascade. In NIPS01, 2001.

[Viola and Jones, 2001b] P. Viola and M. Jones. Rapid object detection using a

boosted cascade of simple features. In CVPR01, 2001.

[Wagner et al., 2008] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom

Drummond, and Dieter Schmalstieg. Pose tracking from natural features on mo-

bile phones. In ISMAR’08, 2008.

[Wal, 2005] Thomas Vander Wal. Folksonomy definition and wikipedia. Website,

11 2005.

[Want, 2004] R. Want. Rfid - a key to automating everything. In Scientific Ameri-

can, 2004.

Bibliography 212

[Washio and Motoda, 2003] T. Washio and H. Motoda. State of the art of graph-

based data mining. SIGKDD Explor. Newsl., 5(1):59–68, 2003.

[Webb, 2002] A. Webb. Statistical Pattern Recognition. Wiley, second edition, 2002.

[Weber et al., 2000a] M. Weber, M. Welling, and P. Perona. Towards automatic

discovery of object categories. In CVPR00, 2000.

[Weber et al., 2000b] Markus Weber, Max Welling, and Pietro Perona. Unsuper-

vised learning of models for recognition. In ECCV00, 2000.

[Wiskott et al., 1997] Laurenz Wiskott, Jean-Marc Fellous, Norbert Kruger, and

Christoph von der Malsburg. Face recognition by elastic bunch graph matching.

PAMI, 19(7):775–779, 1997.

[Wolfson and Rigoutsos, 1997] Haim J. Wolfson and Isidore Rigoutsos. Geometric

hashing: An overview. IEEE Comput. Sci. Eng., 4(4):10–21, 1997.

[Wu, 2005] Ching-Tung Wu. Embedded-text detection and its application to anti-

spam filtering. Master’s thesis, University of California, Santa Barbara, 2005.

[Yan and Han, 2002] X. Yan and J. Han. gspan: Graph-based substructure pattern

mining. In ICDM ’02: Proceedings of the 2002 IEEE International Conference

on Data Mining (ICDM’02), 2002.

[Yan and Han, 2003] X. Yan and J. Han. Closegraph: mining closed frequent graph

patterns. In KDD ’03: Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, 2003.

[Yang, 2006] Guizhen Yang. Computational aspects of mining maximal frequent

patterns. Theor. Comput. Sci., 362(1):63–85, 2006.

[Zaiane et al., 1998] Osmar R. Zaiane, Jiawei Han, Ze-Nian Li, and Jean Hou. Min-

ing multimedia data. In CASCON’98, 1998.

[Zaki, 2000] Mohammed J. Zaki. Scalable algorithms for association mining. IEEE

Transactions on Knowledge and Data Engineering, 12(3):372–390, 2000.

[Zobel and Moffat, 2006] Justin Zobel and Alistair Moffat. Inverted files for text

search engines. In ACM Comput. Surv., 2006.

Curriculum Vitae

Personal Data

Name Till Quack

Date of Birth 15.09.1978

Place of Birth Göttingen, Germany

Citizenship German

Education

1984 – 1991 Primary School. Ebmatingen and Pfaffhausen, Switzerland

1991 – 1998 High-School. Realgymnasium Rämibühl, Zürich, Switzerland

1998 – 2004 Studies of Information Technology and Electrical Engineering at

ETH Zurich, Switzerland. Graduation: MSc. ETH and Dipl. Ing.

ETH in Information Technology and Electrical Engineering

Fall 2004 MSc. Project at University of California at Santa Barbara. Vision

Research Lab

2004 – 2008 Doctoral Student at ETH Zurich, Computer Vision Laboratory,

Department of Information Technology and Electrical Engineering

Occupations

1998 Marent AG, Technical Author

1998 – 2006 Quack Internet Solutions, founder

2004 – 2008 Research Assistant at ETH Zurich, Computer Vision Laboratory,

Department of Information Technology and Electrical Engineering

2006 – kooaba AG, co-founder & CTO

