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Abstract. We present a system which allows to request information on
physical objects by taking a picture of them. This way, using a mobile
phone with integrated camera, users can interact with objects or ”things”
in a very simple manner. A further advantage is that the objects them-
selves don’t have to be tagged with any kind of markers. At the core of
our system lies an object recognition method, which identifies an object
from a query image through multiple recognition stages, including local
visual features, global geometry, and optionally also metadata such as
GPS location. We present two applications for our system, namely a slide
tagging application for presentation screens in smart meeting rooms and
a cityguide on a mobile phone. Both systems are fully functional, includ-
ing an application on the mobile phone, which allows simplest point-and-
shoot interaction with objects. Experiments evaluate the performance of
our approach in both application scenarios and show good recognition
results under challenging conditions.

1 Introduction

Extending the Internet to physical objects - the Internet of Things - promises
humans to live in a smart, highly networked world, which allows for a wide range
of interactions with this environment. One of the most convenient interactions
is the request of information about physical objects. For this purpose several
methods are currently being discussed. Most of them rely on some kind of unique
marker integrated in or attached to the object. Some of these markers can be
analyzed using different kinds of wireless near field communication (for instance
RFID tags [24] or Bluetooth beacons [11]), others are visual markers and can be
analyzed using cameras, for instance standard 1D-barcodes [2] or their modern
counterparts, the 2D codes [21].

A second development concerns the input devices for interaction with physi-
cal objects. In recent years mobile phones have become sophisticated multimedia
computers that can be used as flexible interaction devices with the user’s environ-
ment. Besides the obvious telephone capabilities, current devices offer integrated
cameras and a wide range of additional communication channels such as Blue-
tooth, WLAN or access to the Internet. People are used to the device they own
and usually carry it with them all day. Furthermore, with the phone-number,
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a device is already tied to a specific person. Thus it is only natural to use the
mobile phone as a personal input device for the Internet of things.

Indeed, some of the technologies mentioned above have already been inte-
grated in mobile phones, for instance barcode readers or RFID readers. The
ultimate system, however, would not rely on markers to recognize the object,
but rather identify it by its looks, i.e. using visual object recognition from a
mobile phone’s camera image. Since the large majority of mobile phones contain
an integrated camera, a significant user base can be addressed at once. With
such a system, snapping a picture of an object would be sufficient to request
all the desired information on it. While this vision is far from being reality for
arbitrary types of objects, recent advances in the computer vision field have led
to methods which allow to recognize certain types of objects very reliably and
”hyperlink” them to digital information.

Using object recognition methods to hyperlink physical objects with the dig-
ital world brings several advantages. For instance, certain types of objects are
not well suited to attach markers. This includes tourist sights, which are often
large buildings and a marker might only be attached at one or few locations
at the building, an experiment which has been attempted with the Semapedia
project 1. Furthermore, a user might want to request information from a dis-
tance, for instance for a church tower which is up to several hundred meters
away. But even if the object is close, markers can be impractical. A barcode or
RFID attached to the label of an object displayed in the museum would be dif-
ficult to access if the room is very crowded. Taking a picture of the item can be
done from any position where it is visible. Furthermore, consistent tagging the
objects is often difficult to achieve. One example are outdoor advertising posters.
If a poster company wanted to ”hyperlink” all their poster locations, they would
have to install an RFID or bluetooth beacon in each advertising panel or attach
a barcode to each of them, which requires a standardized system and results in
costs for installation and maintenance. Another field of application are presen-
tation screens in smart meeting rooms or information screens in public areas.
The content displayed on the screen is constantly changing and it would be a
involved process to add markers to all displayed content.

Using object recognition to interact with these objects requires only a data-
base of images. That being said, object recognition does not come without re-
strictions, either. For instance, it is currently (and maybe always) impossible to
discriminate highly similar objects, such as two slightly different versions of the
same product in a store. Furthermore, efficient indexing and searching visual
features for millions or billions of items is still a largely unsolved problem.

In this paper we present a method and system enabling the Internet of Things
using object recognition for certain types of objects or ”things”. At the core of
our server-side system lies a retrieval engine which indexes objects using scale
invariant visual features. Users can take a picture of an object of interest, which
is sent to the retrieval engine. The corresponding object is recognized and and
an associated action is executed, e.g. a web-site about the object is opened. The

1 http://www.semapedia.org
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Fig. 1. The user ”tags” a presented slide using our mobile application by taking a
picture (left), which is automatically transmitted to the server and recognized (middle),
a response is given in an automatically opened WAP browser (right).

system is completed with a client-side application which can be installed on a
mobile handset and allows true point-and-shoot interaction with a single click.

We present two fully functional applications, which demonstrate the flexibil-
ity of the suggested approach. The first one is slide tagging in smart meeting
rooms. Users have the ability to ”click” on slides or sections of slides that are
being presented to record them for their notes or add tags. The second appli-
cation is a cityguide on the mobile phone. Users have the possibility to take a
picture of a sight, send it to a recognition service, and receive the corresponding
Wikipedia article as an answer. For this application, the search space is limited
by integrating location information, namely cell-tower ids or GPS.

Both systems are experimentally evaluated in different dimensions, including
different phone models with different camera qualities, for the trade-offs using
different kinds of search space restriction (geographic location etc.), and with
and without projective geometry verification stage.

The remainder of this paper is organized as follows: we start with an overview
over related work in section 2. The main body of the paper is built around the
two applications presented, namely hyperlinked slides for interactive meeting
rooms in section 3 and hyperlinked buildings for a cityguide in section 4. Each
of these sections discusses method and implementation, followed by an experi-
mental evaluation of the respective system. Finally, conclusions and outlook are
presented in section 5.
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2 Related Work

Our method can be related to other works in several aspects. One aspect covers
work related to our smart meeting room application, for instance the use of
camera-equipped mobile phones as an interaction device for large screens. Here,
Ballagas et al. have suggested a system [4] which allows users to select objects on
large displays using the mobile phone. However, their method relies on additional
2D barcodes to determine the position of the camera and is meant to use the
mobile phone like a computer mouse in order to drag and drop elements on
the screen. Very recently, in [7] a system similar to ours has been proposed
for recognizing icons on displays. While the screens are conceptually similar to
the ones used in meeting rooms, we are not aware of any other work that has
proposed using camera-equipped mobile phones for tagging or retrieval of slides
in smart meeting rooms. The most similar works in that respect deal with slide
retrieval from stationary devices. For instance, Vinciarelli et al. have proposed a
system [23] which applies optical character recognition (OCR) to slides captured
from the presentation beamer. Retrieval and browsing is done with the extracted
text, i.e. the method cannot deal with illustrations or pictures in the slides.
SlideFinder [18] is a system which extracts text and image data from the original
slide data. Image retrieval is based on global color histograms and thus limited
to recognize graphical elements or to some extent the global layout of the slide.
Using only the stored original presentation files instead of using the captured
image data does not allow to synchronize the slides to other meeting data such
as recorded speech or video. Both systems are only meant for query-by-keyword
retrieval and browsing from a desktop PC. While our system could also be used
for off-line retrieval with query-by-example, we focus on tagging from mobile
phones. This requires the identification of the correct slide reliably from varying
viewpoints, which would not be possible with the cited approaches.

Another aspect that relates to our work are guiding applications on mobile
devices. Bay et al. have suggested a museum guide on a tablet PC [5]. The
system showed good performance in recognizing 3D exhibition objects using scale
invariant local features. However, in their system the whole database resisted
on the client device, which is generally not possible for smaller devices such
as mobile phones and larger databases. A similar system on a mobile phone,
but with somewhat simpler object recognition is the one proposed in [12]. The
suggested recognition relies on simple color histograms, which turns out not
to be very robust to lighting changes in museum environments. Discriminating
instances of the objects in our applications, namely slides or outdoor images of
touristic sights, is even less reliable with global color histograms.

The work most similar to our city guide application is maybe [20]. Similar
to the cityguide application presented in this paper, the authors also suggest
a cityguide on a mobile phone using local features. However, their focus is on
improving recognition capabilities using informative and compact iSift features
instead of SIFT features. Our work differs significantly in several points: we use
multiple view geometry to improve recognition, we rely on SURF features (which
are also more compact and faster than SIFT features), and we also investigate
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Fig. 2. Typical presentation slides from the AMI corpus [8] database

numerically the effects of restriction by GPS or cell ids on the recognition rate
and matching speed. That is, instead of improving the features themselves, we
add a global geometry filter as a final verification stage to the recognition system.
Finally, the test databases we propose contains images taken from viewpoints
with much larger variation than the databases used in [20].

The main contributions of this work are thus: a full object recognition sys-
tem pipeline, including a server side recognition server and a client side software
for single-click interaction with the environment; a complete object recognition
pipeline for the Internet of Things, which starts with local feature correspon-
dences, verification with projective geometry, and search space restriction by
multimodal constraints, such as GPS location; the implementation evaluation
for two sample applications, namely slide tagging and bookmarking in smart
meeting rooms, as well as a cityguide application for the mobile phone; last but
not least, for both cases the evaluation on challenging test datasets.

3 Hyperlinked Slides: Interactive Meeting Rooms

Today’s meeting rooms are being equipped with an increasing number of elec-
tronic capturing devices, which allow recording of meetings across modalities
[1,3]. They often include audio recording, video recording, whiteboard capturing
and, last but not least, framegrabbing from the slide projector. These installa-
tions are usually deployed to facilitate two tasks: allowing off-line retrieval and
browsing in the recorded meeting corpus and turning the meeting rooms into
smart interactive environments. In the work at hand, we focus on the captured
presentation slides which are a central part of today’s presentations. As shown
in figure 2, the slides usually contain the speaker’s main statements in written
form, accompanied by illustrations and pictures, which facilitate understanding
and memorizing the presentation. Indeed, the slides can be seen as the ”glue”
between all the recorded modalities. Thus, they make a natural entry point to
a database of recorded presentations.

A typical usage scenario for our system is as follows: Using the integrated
camera of her mobile phone, an attendee to a meeting takes a picture of a slide
which is of interest to her. The picture is transmitted to a recognition server over
a mobile Internet connection (UMTS, GPRS etc.). On the server, features are
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extracted from the picture and matched to the database of captured slides. The
correct slide is recognized, added to the users personal ”bookmarks”, and she
receives a confirmation in a WAP browser on her mobile phone. Note that the
messaging from the phone can be done using standard MMS or using a custom
client-side application which we programmed in C++ on the Symbian platform.
Figure 1 shows screenshots of our mobile application for a typical usage scenario.

Back at her PC, the user has access to all her bookmarked slides at any time,
using a web-frontend which allows easy browsing of the slides she bookmarked.
From each bookmarked slide she has the possibility to open a meeting browser
which plays the other modalities, such as video and audio recordings, starting
at the timepoint the slide was displayed. By photographing only a section of a
slide, the user has also the possibility to highlight certain elements (both text
or figures) - in other words, the mobile phone becomes a digital marker tool.

Please note that one could assume that a very simple slide bookmarking
method could be designed, which relies only on timestamping. The client-side
would simply transmit the current time, which would be synchronized with the
timestamped slides. Our system does not only allow more flexible applications
(the beforementioned ”hightlighting” of slide elements) but is robust towards
synchronization errors in time. In fact, using a ”soft” time restriction of some
minutes up to even several hours, would make our system more scalable and
unite the best of both worlds.

The basic functionality of the proposed slide recognition system on the server
is as follows: for incoming queries, scale invariant local features are extracted.
For each feature a nearest neighbor search in the reference database of slides is
executed. The resulting putative matches are verified using projective geometry
constraints. The next two subsections describe these steps in more detail.

3.1 Slide Capturing and Feature Extraction

We start from a collection of presentation slides which are stored as images.
This output can be easily obtained using a screen capture mechanism connected
to the presentation beamer. From the image files, we extract scale invariant
features around localized interest points. In recent years significant progress has
been made in this field and has led to a diverse set of feature extraction and
description methods [16,6,17], which have been successfully applied in domains
such as video retrieval [22], object class recognition [15] etc. It turns out that such
local features cannot only be used to describe and match objects and scenery,
but work also reliably for text such as license plates [9]. Thus, this class of
features is a good choice for description of the slide content which contains both
text and visual data such as pictures and charts. Furthermore, as opposed to
global features proposed in [18,12] they also allow the user to photograph specific
sections or elements of a slide as a query to our system. In our implementation
we use the publicly available SURF [6] detector and descriptor combination. This
choice was motivated by the fast computation times and competitive recognition
performance shown in [6]. The output of the SURF detector consists of 64-
dimensional feature vector for each detected interest point in an image.
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3.2 Slide Recognition System

The slide recognition approach consists of two steps: feature matching and global
geometric verification. For the feature matching we compare the feature vectors
from the query image to those of the images in the database. More precisely,
for each 64-dimensional query vector, we calculate the Euclidean distance to the
database vectors. A match is declared if the distance to the nearest neighbor is
smaller than 0.7 times the distance to the second nearest neighbor. This matching
strategy was successfully applied in [16,6,5,17].

Finding the best result could now be done by just selecting the query-database
pair, which receives the highest number of matches. However, without verifica-
tion of the geometric arrangement of the matched interest points, the wrong
query-database pair may be selected. This is particularly true in our case, where
we have a high number of matches stemming from letters in text parts of the
slides. These matches are all ”correct” on the feature level, but only their con-
sistent arrangement to full letters and words is correct on the semantic level.

To solve this problem, we resort to projective geometry. Since the objects (the
slides) in the database are planar, we can rely on a 2D homography mapping
[13] from the query image to a selected candidate from the database in order to
verify the suggested matching. That is, the set of point correspondences between
the matched interest points from query image xq

i and database image xd
i must

fulfill
Hxq

i = xd
i i ∈ 1 . . . 4 (1)

where H is the 3x3 homography matrix whose 8 degrees of freedom can be
solved with four point correspondences i ∈ 1 . . . 4. To be robust against the
beforementioned outliers we estimate H using RANSAC [10]. The quality of
several estimated models is measured by the number of inliers, where an inlier
is defined by a threshold on the residual error. The residual error for the model
are determined by the distance of the true points from the points generated by
the estimated H . The result of such a geometric verification with a homography
is shown in Figure 6.

3.3 Experiments

For our experiments we used data from the AMI meeting room corpus [8]. This
set contains the images of slides which have been collected over a extended
period using a screen-capture card in a PC connected to the beamer in the
presentation room. Slides are captured at regular time intervals and stored as
JPEG files. To be able to synchronize with the other modalities (e.g. speech and
video recordings), each captured slide is timestamped.

To create the ground truth data, we projected the slides obtained from the
AMI corpus in our own meeting room setting and took pictures with the inte-
grated camera of two different mobile phone models. Namely, we used a Nokia
N70, which is a high-end model with a 2 megapixel camera, and a Nokia 6230,
which is an older model with a low quality VGA camera. We took 61 pictures
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Fig. 3. Examples of query images, from left to right: with compositions of text and
image, taken from varying viewpoints, at different camera zoom levels or may contain
clutter, example which select a specific region of a slide, or contain large amounts of
text.

with the N70 and 44 images with the Nokia 6230 2. Figure 3 shows some exam-
ples of query images. The reference database consists of the AMI corpus subset
for the IDIAP scenario meetings, which contains 1098 captured slide images.

We extracted SURF features from the reference slides in the database at two
resolutions, 800x600 pixels and 640x480 pixels. For the 1098 slides this resulted in
1.02 ∗ 106 and 0.72 ∗ 106 features, respectively. For the SURF feature extraction
we used the standard settings of the detector which we downloaded from the
author’s website.

The resolutions of the query images were left unchanged as received from the
mobile phone camera. We ran experiments with and without homography check,
and the query images were matched to the database images at both resolutions.
A homography was only calculated if at least 10 features matched between two
slides. If there were less matches or if no consistent homography model could be
found with RANSAC, the pair was declared unmatched. If there were multiple
matching slides, only the best was used to evaluate precision. Since the corpus
contains some duplicate slides, a true match was declared if at least one of the
duplicates was recognized.

Table 1 shows the recognition rates, for the different phone models, different
resolutions and with and without homography filter. At 800x600 resolution, the
homography filter gives an improvement of about 2% or 4% for each both phone
type, respectively. The recognition rate with a modern phone reaches 100%, the
lower quality camera in the older 6230 model results in lower recognition rates.
The results for the 640x480 database confirm the results of the 800x600 case,
but achieve overall lower recognition scores. This is due to the fact, that at lower
resolution fewer features are extracted.

4 Hyperlinked Buildings: A Cityguide on a Mobile Phone

The second scenario we present in this paper deals with a very different kind of
”things”. We ”hyperlink” buildings (tourist sights etc.) to digital content. Users

2 The query images with groundtruth are made available for download under
http://www.vision.ee.ethz.ch/datasets/.
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Table 1. Summary of recognition rates for slide database

Prec. with Geometry Filter Prec. without Geometry Filter
800x600 640x480 800x600 640x480

Nokia N70 100% 98,3% 98,3% 96,7%
Nokia 6230 97,7% 93,2% 91% 86,3%

can request information using an application on their mobile phone. The inter-
action process, the software and user interface are very similar to the meeting
room scenario. However, this time the number of objects is nearly unlimited, if
the application is to be deployed on a worldwide basis. To overcome the result-
ing scalability problems, we restrict the search space geographically. That is, we
restrict the visual search to objects in the database, which lie in the geographic
surroundings of the user’s position.

In the following sections we describe this approach in more detail and evaluate
its performance.

4.1 Visual Data and Geographic Location

From the user perspective, the interaction process remains the same as in the
meeting room scenario: by the click of a button on the mobile phone, a picture
is taken and transmitted to the server. However, unlike in the meeting room
application, the guide client-side application adds location information to the
request. This information consists of the current position read from an integrated
or external (bluetooth) GPS device and of the current celltower id the so called
CGI (Cell Global Identity).

This combination of a picture and location data forms a perfect query to
search for information on static, physical objects. As mentioned before, location
information alone would in general not be sufficient to access the relevant in-
formation: the object of interest could be several hundred meters away (e.g. a
church tower), or there could be a lot of objects of interest in the same area (e.g.
the St. Mark’s square in Venice is sourrounded by a large number of objects of
interest). Furthermore, in urban areas with tall buildings and narrow roads, GPS
data is often imprecise. On the other hand, relying on the picture only would
not be feasible either: the size of the database would make real-time queries and
precise results very difficult to achieve.

After the query has been processed, the user receives the requested informa-
tion directly on the screen of her mobile phone. In our demo application we
open a web browser with the Wikipedia page corresponding to the object. This
is illustrated in Figure 4.

4.2 System Design

The cityguide system consists of a server side software and a client-side software
on the mobile phone.
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Fig. 4. Client software for the cityguide application: the user snaps a picture, waits a
few seconds, and is redirected to the corresponding Wikipedia page

The server side elements consist of a relational database for storage of image
metadata (GPS locations, cell information etc.) and information about the stored
sights. We used mySQL for this purpose. The image recognition is implemented
as a server in C++ which can be accessed via HTTP.

Queries from the client-software are transmitted to the server as HTTP POST
requests. A middleware written in PHP and Ruby restricts the search by location
if needed and passes this pre-processed query to the recognition server. The
associated content for the best match is sent back to the client software and
displayed in an automatically opened browser, as shown in figure 4.

Client software on the mobile phone was implemented both in Symbian C++
and Java3. Note that the feature extraction of the query happens on the server
side, i.e. the full query image is transmitted to the server. It is also possible
to extract SURF features on the mobile phone and then transmit them as a
query to the server. An implementation of this method showed, that SURF
feature extraction on the phone is currently too slow: our un-optimized version
in Symbian C++ on a Nokia 6630 required about 10 seconds to calculate the
query features. In contrast, on a modern PC SURF feature extraction takes a few
hundred ms [6]. Since the SURF features are not much more compact than the
original image (several hundred 64 dimensional feature vectors per image), the
main advantages of feature extraction on the phone would be increased privacy
(only features transmitted instead of image) and the possibility to give a user

3 Unfortunately, only the Symbian version allows access to the celltower ids.
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instant feedback if a query image contained too few features, for instance due to
blur, lack of texture, or low contrast due to back light.

Alternatively our system can also be accessed using the Multimedia Message
Service MMS. A picture is transmitted to the server by sending it as an MMS
message to an e-mail address. The response (Wikipedia URL) is returned as an
SMS message.

4.3 Object Recognition Method

The data from the client-side application are transmitted to the recognition
server, where a visual search restricted by the transmitted location data is ini-
tiated. If GPS data is used, all database objects in a preset radius are searched
(different radii are evaluated in the experimental section of this paper). If only
cell-tower information is used, the search is restricted to the objects annotated
with the same CGI string.

The object recognition approach is very similar to the method discussed for
the meeting room slides. That is, putative matches between pairs of query and
databases images are found by nearest neighbor search for their SURF [6] de-
scriptors. These putative matches are validated with a geometry filter. However,
since we deal with 3-dimensional objects in the cityguide application, the pre-
cise model is now the 3x3 Fundamental matrix F instead of the Homography
matrix H [13]. The Fundamental matrix maps points in one image to epipolar
lines another view. Residual errors for the models are thus determined by the
distance of the true points from the epipolar lines generated by the estimated
F [13].

From a practitioners point of view, for objects such as buildings which consist
basically of multiple planes (facades) one can approximate the results by using
a homography nevertheless, which requires less point correspondences. The es-
timation of the model from putative point correspondences can be done with
RANSAC [10] in both cases.

Note that the model is particularly important to filter out false positive recog-
nitions: Especially on structures on buildings, there are a lot of repeated patterns
which match between different buildings. Only their correct arrangement in space
or the image plane, respectively allow for a robust decision if an object was truly
detected. Simply setting a threshold on the number matches is dangerous par-
ticularly, since discriminating a false positive recognition (e.g. a query image of
an building which is not even in the database) from a query with few matches
due to challenging conditions (e.g. image taken from a distance) is infeasible.

4.4 Experiments

To evaluate the proposed method, we collected a database of 147 photos covering
9 touristic sights and their locations. The 147 images cover the 9 objects from
multiple sides, at least 3 per object. The database images were taken with a
regular point-and shoot camera. To determine their GPS location and CGIs
(cell tower ids) we developed a tracker application in Symbian C++ which runs
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on a mobile phone and stores the current GPS data (as obtained from an external
bluetooth GPS device) and CGI cell information at regular time intervals. This
log is synchronized by timestamps with the database photos.

We collected another 126 test (query) images, taken with different mobile
phones (Nokia N70 and Nokia 6280, both with 2 Megapixel camera) at different
days and times of day, by different users and from random viewpoints. Of the
126 query images 91 contain objects in the database and 35 contain images of
other buildings or background (also annotated with GPS and cellid). This is an
important to test the system with negative queries, an experiment which has
been neglected in several other works. Compared to the MPG-20 database 4 we
have fewer object but from multiple sides (in total about 30 unique representa-
tions), more challenging viewpoints for each side (distance up to 500 meters),
full annotation with both GPS data and celltower ids, and more than 4 times
as many query images. The database with all annotations (GPS, cellids, objects
Wikipedia pages etc.) is available for download under 5. Both database and query
images were re-scaled to 500x375 pixels. (Sample images from the database are
visible in Figure 7 and are discussed a few paragraphs below).

Note that the CGI (Cell Global Identity) depends on the network operator,
since each operator defines its own set of cell ids. If the operator does not re-
lease the locations of the cells (which is common practice in many countries
for privacy reasons), we have to find a mapping between the cellids of different
operators. We achieved such an experimental mapping by using our tracker ap-
plication: tracks obtained with SIM cards of different mobile network operators
were synchronized by their GPS locations: if GPS points were closer than 50m
a correspondence between the respective cell-ids was established. This mapping
is far from complete, but it simulates an approach which is currently followed
by several initiatives on the Web.

We present experiments for three scenarios: linear search over the whole data-
base without location restriction, restriction by GPS with different search radii,
and restriction by cellid. For all cases we compare the trade-off between search
time and recognition rate. A pair of images was considered matched, if at least

Table 2. Summary of recognition rates for cityguide

Prec. with Geometry Filter Prec. without Geometry Filter
Rec. rate Avg. Matching Time Rec. rate Avg. Matching Time

Full database linear 88% 5.43s 67.4% 2.75s
GPS 300m Radius 89.6% 3.15s 76.1% 1.62s
Cell id 74.6% 2.78s 73% 1.34s

20 features matched. From the images which fullfiled this criterion the one with
the most matches was returned as a response. Table 2 summarizes the results.

4 http://dib.joanneum.at/cape/MPG-20/
5 http://www.vision.ee.ethz.ch/datasets/
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For the baseline, linear search over the whole database without geometry filter
we achieve 67.4% recognition rate. This value is outperformed by over 20% with
the introduction of the geometry filter, resulting in 88% recognition rate. This
is due to the removal of false positive matches. However, the improved precision
comes at a price in speed.

Restricting search by GPS position with a radius of 300 meters is about 40%
faster while increasing precision slightly for the case with geometry filter and
more substantially for the case without filter. Restriction by celltower CGI is
slightly faster but significantly worse in precision. This seems mostly due to the
fact, that our CGI correspondences for different operators might be incomplete.
For a real world application where an operator would hopefully contribute the
cell-id information or a search radius bound by GPS coordinates we would thus
expect better results.

Overall the best results are achieved with GPS and a rather large radius of
several hundred meters. In figure 5 we plot the precision versus time for different
radii. At 100 meters we retrieve most of the of the objects correctly, but only
between 300 and 500 meters we achieve the same recognition rates as for linear
search, however at significantly higher speed. In fact, this speed-up over linear
search will obviously be even larger, the more items are in the database. The
recognition times can be further sped up with a suitable indexing structure
such as [14,19]. We have compared several methods, however the results are
preliminary and beyond the scope of this paper.
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Fig. 5. Recognition rate (left) and matching time (right) depending on radius around
query location

Visual results are shown in Figure 7. Section (a) shows query images in the left
column and best matching database images for each query in the right column.
Note the distance of the query image to the database image in the first row and
the zoom and low contrast of the query in the second row. Section (b) contains a
query image at the top and the best database match at the bottom. Besides the
viewpoint change and occlusion through the lamp and railing, note that query
and database image have very different clouds and lighting since they were taken
several weeks apart. Section (c) shows an other query database pair, this time for
a facade with strong cropping and change of angle. The last image in section (d)



Object Recognition for the Internet of Things 243

Fig. 6. Geometric verification with a homography. Top rows: matches for a query image
with the correct database image. Top left: before homography filter, top right: after
homography filter. As the match between the slides is correct most of the putative
feature matches survive the homography filter. At the bottom rows we match the same
image to a false database image. As can be seen at the bottom left, a lot of false putative
matches would arise without geometric verification, in extreme cases their count can
be similar to or higher than for the correct image pair. At the bottom right all the
false matches are removed, only features from the (correctly) matching frame survive
and the discriminance to the correct pair is drastically increased.
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(c) (d)

(a) (b)

Fig. 7. Result images for the city-guide application, see text for details

contains a typical ”negative” query image, which should not return any matching
object.

The results highlight the qualities of the suggested approach: the geometry
filter improves recognition rates drastically. Restricting search to a geographic
radius of a few hundred meters increases speed significantly even in our test
database and will be essential for large-scale real world applications. At the
same time, the results show that relying only on GPS information (objects up
to several dozen meters away) would not be suitable for a real-world guiding
application. Being able to ”select” the objects with their mobile phone brings
significant usability benefits to the user.
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5 Conclusions and Outlook

We have presented an approach for object recognition for the Internet of Things,
which allows users to request information on objects by taking a picture of them.
We have implemented and demonstrated a full system and evaluated its capabil-
ities in two challenging scenarios: slide tagging and bookmarking from screens in
smart meeting rooms and a cityguide on a mobile phone. For both applications a
server side object recognition system executes the following pipeline: local features
are extracted from an incoming image. The features are matched to a database,
where the search space is optionally restricted by metadata delivered with the re-
quest, for instance by geographic location from GPS coordinates or celltower ids.
The resulting candidate matches are verified with a global geometry filter. The
system is completed with a client-side software, which transmits query image and
metadata such as GPS locations to the server with a single click.

We have demonstrated the flexibility of the suggested approach with an experi-
mental evaluation for both sample applications. To that end, the system was evalu-
ated on two very challenging test datasets. Building on local features and boosting
the recognition rate with a geometry filter we achieved very high recognition rates.
This approach worked well for both matching of slides with large amounts of text
and images of tourist sights from strongly varying viewpoints which underlines
the flexibility of the proposed approach. For the especially challenging cityguide
application we could find a good balance between performance and recognition
rate by restricting the search space using GPS location information.

The results showed, that the Internet of Things by object recognition can be
realized already today for certain types of objects. In fact, the system can be seen
as a visual search engine for the Internet of Things. Relying just on an image
sent from a mobile phone, the system can be easily adopted by both end-users
and system providers. With the advance of computer vision methods, we expect
a wealth of additional possibilities in the coming years.
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