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Abstract

Future wireless communication systems will demand high data rates for delivery of data
like multimedia content. The use of MIMO systems with multiple transmit and receive
antennas enables the introduction of space-time coding to improve link reliablity and
spatial multiplexing to increase spectral efficiency. Recently a class of codes was proposed
in [14] which makes it possible to combine space-time coding and spatial multiplexing. The
proposed design for the LSD codes includes an optional forward error correction (FEC)
element. The goal this work is to investigate the combination of LSD codes with FEC.

The results of our simulations show that the combination of LSD codes with FEC
yields a significant improvement in terms of a lower bit error rate especially if a weak
FEC with a high data rate is performed. In addition, if follows that in order to increase
spectral efficiency spatial multiplexing outperforms the choice of a higher symbol-alphabet
and diversity. However, the combination of diversity and a higher FEC code-rate even
outperforms spatial multiplexing in terms of link reliability.

LSD codes and FEC involve a large number of parameters and, consequently, a wide
range of optimization. Therefore, this work only covers a small part of the problem.
However, the results raise suspicion that the combination of LSD codes with FEC is a
reasonable tool in order to improve link reliability and spectral efficiency.
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Chapter 1

Introduction

Future wireless communication systems will demand high data rates for delivery of data
like multimedia content. The use of MIMO systems (multiple input multiple output) with
multiple transmit and/or receive antennas is one technology to support these high data
rates in a rich-scattering wireless channel [4].

The use of multiple transmit and receive antennas enables the introduction of space-
time coding to improve link reliability and spatial multiplexing to increase spectral effi-
ciency. Space-time codes introduce spatial and temporal correlations into the signal to
benefit from diversity. Gain from diversity can be achieved either in the sender (transmit
diversity), the receiver (receive diversity) or in both, sender and receiver. Spatial multi-
plexing increases the data rate at constant bandwidth by opening several data streams
over the different antennas.

Recently, a class of codes was proposed in [14] which makes it possible to combine
space-time coding and spatial multiplexing. These linear scalable dispersion (LSD) codes
are designed in a way that allows to flexibly trade off between improved link reliability
(i.e. diversity) and increased spectral efficiency (i.e. spatial multiplexing). The proposed
design for the LSD codes includes an optional forward error correction (FEC) element as
shown in Figure 1.1. So far, no research has been done on the effects of this FEC block
on the performance of the whole system. Thus, in this work we present the results we
obtained by combining LSD codes with several well-known FEC codes. The combination
of space-time codes is motivated by higher performance. Questions that arise are for
example at what cost in terms of complexity or if in general the combination of space-time
codes and FEC is useful.

In Chapter 2 we discuss the theory of space-time processing in general and LSD codes
in particular. Chapter 3 describes the FEC codes we used during our project. Interference
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Figure 1.1: Considered MIMO-system

compensation and decoding are discussed in Chapter 4. The computational complexity
of the different FEC techniques and other parts of the system is presented in Chapter 5.
Chapter 6 contains the results from our simulations and finally, Chapter 7 summarizes our
work with conclusions and outlook.



Chapter 2

Space-Time Processing

When data is transmitted in wireless environments it can be corrupted by effects like fading
or interference. Fading is a result of the different paths the signal travels between sender
and receiver. When sender or receiver move, each transmitted signal on the different paths
gets a different phase-shift which leads to (constructive or destructive) superposition at the
receiver. In the following we give a short introduction to techniques that combat fading
in order to improve link reliability and/or exploit fading in order to improve spectral
efficiency.

In Section 2.1 space-time codes are discussed. Section 2.2 gives a short introduction
to spatial multiplexing. In Section 2.3 a new class of codes which makes it possible to
combine space-time coding and spatial multiplexing, the so called linear scalable dispersion
(LSD) codes are presented.

2.1 Space-Time Coding

To combat fading and thus improve link reliability diversity can be used. The basic
principle of diversity can be described as follows: Several “copies” of the information
signal are transmitted on channels with independent fading. Thus, the probability that
we can obtain at least one signal with decent quality.

Some examples for diversity are:

Temporal diversity: Combination of channel coding and time interleaving. The signal
is spread over time, i.e. the copies are transmitted in different time-slots. For example a
repetition code.
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Frequency diversity: Waves transmitted on different frequencies induce different multi-
path characteristics in the propagation media. Thus, redundancy in the frequency domain
is obtained. The signal is spread over frequency, examples can be found in spread-spectrum
technologies like CDMA.

Spatial diversity: Spatial diversity is obtained by using several antennas, if the anten-
nas are separated far enough from each other to provide independent fading channels.

Multiple antennas can be used for diversity at the receiver and/or the sender. In
the first case we speak of receive diversity in the latter of transmit diversity. Today,
most systems are built with one antenna at the mobile station and multiple antennas at
the basestation since implementing multiple antennas in the mobile station is technically
rather complex. This means that in the uplink of the system receive diversity can be used,
in the downlink transmit diversity.

While receive diversity is fairly well known, we concentrate on transmit diversity in
the following. For transmit diversity two scenarios are possible: Either channel state
information is available or not.

If the channel is perfectly known at the sender, its influence can be compensated in
the signal before transmitting it such that the signal obtained at the receiving end of the
channel is demodulated perfectly.

More realistic but also more challenging is the case of the unknown channel. Here the
spatial and temporal diversity comes into play and we can pre-process the data for the
different transmit antennas with so called space-time codes.

The code is defined by its transmission matrix. The generic transmission matrix for
transmitting k input symbols α1, α2, . . . , αk using NTX transmit antennas and Ndim time-
slots is defined as

G =


g11 g21 . . . gNTX1

g12 g22 . . . gNTX2

...
...

...
...

g1Ndim
g2Ndim

. . . gNTXNdim

 (2.1)

The entries gij of the transmission matrix G are linear combinations of the in-
put symbols α1, α2, . . . , αk and their conjugates. For example in time-slot j =
2 signals g12, g22, . . . , gNTX2 are transmitted simultaneously from transmit antennas
Tx1, Tx2, . . . , TxNTX . The transmission matrix defines encoding in time and space, hence
the term space-time coding.
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A very elegant example for a space-time code is the two-transmitter scheme proposed
by Alamouti [1]. To present this code we follow closely [10]. In this particular case the
transmission matrix is defined as

G2 =

(
x1 x2

−x∗2 x∗1

)
(2.2)

The code uses NTX = 2 antennas over n = 2 time-slots to transmit the k = 2 input
symbols x1 and x2. This means that the code-rate r = k/n is one.

In any time-slot j two signals are simultaneously transmitted over the antennas Tx1
and Tx2: In one time-slot signal x1 is transmitted from antenna Tx1 and x2 is transmitted
from Tx2, in the next time-slot the signals −x∗2 and x∗1 are transmitted from Tx1 and Tx2,
respectively.

To explain the decoding process we assumme one receive antenna, further we also
assume that the complex fading envelope is constant across the two consecutive timeslots:

h1 = h1(T = 1) = h1(T = 2) (2.3)

h2 = h2(T = 1) = h2(T = 2) (2.4)

Note that the complex fading envelopes h1 and h2 are known in the receiver - they can
be obtained from a training sequence for example.

In the receiver we obtain

y1 = h1x1 + h2x2 + n1 (2.5)

y2 = −h1x
∗
1 + h2x

∗
2 + n2 (2.6)

where y1 is the first received signal, y2 the second and n1 and n2 are independent noise
samples added by the receiver.

Both signals y1 and y2 are passed to the combiner depicted in Figure 2.1 to extract
x1 and x2. In order to extract the signal x1, the received signals y1 and y2 are combined
according to

x̃1 = h∗1y1 + h2y
∗
2

= h∗1h1x1 + h∗1h2x2 + h∗1n1 − h2h
∗
1x2 + h2h

∗
2x1 + h2n

∗
2

= (|h1|2 + |h2|2)x1 + h∗1n1 + h2n
∗
2 (2.7)
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Figure 2.1: Twin transmitter space-time code by Alamouti

and

x̃2 = h∗2y1 − h2y
∗
2

= h∗2h1x1 + h∗2h2x2 + h∗2n1 + h1h
∗
1x2 − h1h

∗
2x1 − h1n

∗
2

= (|h1|2 + |h2|2)x2 + h∗2n1 + h1n
∗
2 (2.8)

It can be seen from (2.7) and (2.8) that x1 and x2 have been separated by simple
multiplications and additions - because of the orthogonality introduced in G2 x2 and x1

are cancelled out in (2.7) and (2.8), respectively. Thus, signals x1 and x2 are separated,
x̃1 and x̃2 depend only on constructive interference and an additive noise term.

2.2 Spatial Multiplexing

When using multiple antennas at the sender and the receiver as depicted in Figure 1.1,
they can not only be used to obtain diversity gain, but also to enable spatial multiplexing.
In a rich scattering environment (i.e. the fading coefficients are independent), the use
of multiple transmit and receive antennas makes it possible to operate several parallel
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Figure 2.2: LSD code overview

data streams in the same frequency band - the only cost for this increase in capacity is
the cost of the additional antennas, in particular, no extra bandwidth is needed. The
symbol stream at the sender is broken up into several parallel symbol streams which are
transmitted simultaneously and in the same frequency band from the antennas. Each
receive antenna observes a superposition of these symbol streams, i.e. spatial multiplexing
leads to intersymbol interference (ISI). Since each transmit antenna induces a different
spatial pattern at the receiver due to multipath propagation, the individual data streams
can be separated again.

For a detailed description of the receivers we refer to Section 4.

2.3 Linear Scalable Dispersion (LSD) Codes

When using a MIMO system with multiple antennas, it is possible to use them either
for spatial multiplexing (i.e. subchanneling) to improve the data rate or for diversity to
improve link quality. As it is mentioned in the introduction, the new class of codes
introduced in [14] makes it possible to jointly utilize spatial multiplexing and diversity.
Given a number of antennas at the transmitter and the receiver, the LSD code is designed
to choose the number of antennas for spatial multiplexing and the number of antennas for
diversity in a flexible way.

The code consists of a concatenation of a time variant inner linear code and a time
invariant outer linear code. As an additional element an FEC code can be added. The
linearity of the inner and outer codes preserves the mean capacity of the MIMO channel
Hν and makes the use of a variety of low complexity decoders possible. As it can be
seen in Figure 2.2 all three code designs are decoupled which allows the adaption to the
heterogeneous conditions in the environment. To be precise, the outer code consists of
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Figure 2.3: LSD code overview

a unitary matrix and is optimized for diversity in flat fading. In terms of diversity the
optimal choice for the outer code would be the repetition code. However, the rate of
repetition code is very low. Thus, the outer code in the LSD code is designed to be close
to the performance of the repetition code in terms of diversity, but with substantially
higher code rate. Also, unlike for example the Alamouti code introduced in Subsection 2.1
the outer code is not orthogonal.

The inner code is used for channel conditioning and adaption to RX capabilities.

Figure 2.3 gives a more detailed overview over the signals, parameters and dimensions
used. The input symbol vector α is multiplied with the outer code matrix R to form the
transmit symbol vector s. The dimensions of α and s define the code rate NI/Nc.

The transmit symbol vector s of dimension (NC × 1) is reshaped into a (Nu ×Ndim)-
matrix, where Nu is the number of symbols transmitted per time-slot and Ndim is the
number of time-slots used. The Ndim columns of this matrix are the consecutive input
vectors sν for the linear code Cν , where ν ≤ Ndim is the time index.

The inner code produces the codewords sTX,ν , which are transmitted over the Multiple
Input Multiple Output (MIMO) channel Hν . Usually Hν contains the channel coefficients
between each pair of TX and RX antennas. Further, we assume Rayleigh fading, i.e
i.i.d. complex normal coefficients of Hν (flat fading). The received signal is disturbed
by additive white Gaussian noise (AWGN). Multiplication with HH

v and the inner code
matched matrix CH

v yields a sufficient statistics for the estimation ŝν of the inner code
input vector sν . Since the system transmits Nu symbols in one temporal dimension, Nu

corresponds to the number of spatial subchannels to be used.
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A detailed description of the inner and outer code can be found in [14]. We will
continue with the integration of the FEC codes.
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Chapter 3

Forward Error Correction

Forward error correction (FEC) coding is a type of digital signal processing that improves
data reliability by introducing a known structure into a data sequence prior to transmis-
sion. This structure allows the decoder to detect and possibly correct errors caused by
corruption from the channel and the receiver. As the name implies, this coding technique
enables the decoder to correct errors without requesting retransmission of the original
information.

In our project, we investigated Bose-Chaudhuri-Hocquenghem (BCH) as well as con-
volutional codes. This chapter can be outlined as follows: In Section 3.1 a review of BCH
codes including a short introduction to linear block codes is given. Then, in Section 3.2
convolutional codes are discussed.

3.1 Bose-Chaudhuri-Hocquenghem Codes

The class of Bose-Chaudhuri-Hocquenghem (BCH) codes is a large class of multiple-error-
correcting codes that occupies a prominent place in the theory and practice of error cor-
rection. One reason for this prominency is that given not too large block-lengths, there
are good codes in this class. Another reason is the knowledge of relatively simple and
instrumentable encoding and decoding techniques [3].

BCH codes belong to the class of linear block codes or, to be more specific, to the
subclass of cyclic codes. In the following an introduction to linear block codes and cyclic
codes is given. Then a more precise definition of the class of BCH codes is presented.
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3.1.1 A Short Introduction to Linear Block Codes

1 A block code consists of a set of vectors with N elements, where the vectors are called
codewords and N is called the length of the codeword. The elements of a codeword are
selected from an alphabet of q symbols. If the alphabet consists of the two symbols 1 and
0, the code is a binary code.

A block code maps k information bits into a codeword of length N and the ratio
r = k/N is defined to be the rate of the code. In general, there exist qk different codewords.
(Remember that q is the number of symbols from which the elements of the codeword are
selected.)

The encoding and decoding functions involve the arithmetic operations of addition
and multiplication performed on codewords. These operations are performed according
to the conventions of the algebraic field whose elements are the symbols contained in the
alphabet. A field consists of a set of elements which has the two arithmetic operations
addition and multiplication satisfying certain properties, named in Appendix A.

As stated before, the elements of a codeword are selected from an alphabet of q symbols.
Consequently, codes are constructed from fields with q elements. In coding, q is usually a
finite number, so the field is a finite field or a so called Galois field. A Galois field with q

elements is denoted by GF(q).

When q = pm, where p is a prime and m is any positive integer, it is possible to extend
the field GF(p) to the field GF(pm). This is called the extension field of GF(p). Note that
GF(p) is contained in GF(pm). The theory of finite fields is not discussed in this work.
For further informations we refer to literature (e.g. [3], [12]).

Let x = (xk−1, xk−2, . . . , x1, x0) be the vector of the k information bits. Then the
encoding operation of a linear block code c = (cN−1, cN−2, . . . , c1, c0) can be represented
by multiplying the message x = (xk−1, xk−2, . . . , x1, x0) with the so called generator matrix
G, i.e.

c = xG. (3.1)

Similarly, for every codeword c exists a parity check matrix H, such that

cHT = 0. (3.2)

It can be easily verified that
GHT = 0. (3.3)

Remember that the additions and multiplications in (3.1), (3.2) and (3.3) are performed
in the Galois field GF(q).

1This introduction is based on [12].
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As an example, we consider a binary (7, 4) hamming code that maps 4 information
bits into a codeword of length 7. Note that all operations are performed mod 2, since the
code is binary. For this specific code, the generator matrix G and the parity check matrix
H are defined as:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1



H =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

 .

Assume that the 4 information bits are x = (1101). Then the codeword c can be computed
according to (3.1). It follows c = (1101001). It can easily be verified that cH = 0.

A subclass of the class of linear block codes are cyclic codes. Cyclic codes sat-
isfy the cyclic shift property: If c = (cN−1, cN−2, . . . , c1, c0) is a codeword, then
c̃ = (cN−2, cN−3, . . . , c0, cN−1) is also a codeword. This structure can be used in order
to design encoding and decoding operations.

For convenience, cyclic codes are often represented by a polynomial description. In
this case, c can be written as

c(p) = cN−1p
N−1 + cN−2p

N−2 + · · ·+ c1p + c0, (3.4)

where the coefficients are elements of the Galois field. Instead of the matrix multiplications
in (3.1), (3.2) and (3.3), polynomial multiplications mod

(
pN − 1

)
in the galois field are

performed. A cyclic shift becomes

c̃(p) = p c(p) mod
(
pN − 1

)
= cN−2p

N−1 + cN−3p
N−2 + · · ·+ c0p + cN−1. (3.5)

According to (3.1) the polynomial of a codeword c(p) can be determined by the mes-
sage polynomial x(p) = xk−1p

k−1 + xk−2p
k−2 + . . . + x1p + x0 and the generator polyno-

mial g(p) = gN−kp
N−k + gN−k−1p

N−k−1 + . . . + g1p + g0 in a way that

c(x) = x(p)g(p). (3.6)

Furthermore, there exists a parity polynomial h(p). The parity polynomial and the
generator polynomial fulfil

g(p)h(p) = pN − 1 , 0, (3.7)

where , means that PN − 1 mod
(
pN − 1

)
is equivalent to 0.
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It is possible to determine the zeros γ1, . . . , γr ∈ GF(qm) of a codeword polynomial
c(p), such that

c(γi) = 0, for i = 1, . . . , r. (3.8)

This will be important for the definition of the BCH codes.

3.1.2 BCH Codes

Assume that pN − 1 can be written as

pN − 1 = f1(p)f2(p) · · · fs(p). (3.9)

Because of (3.7), the generator polynomial g(p) must be the product of a subset of
these polynomials:

g(p) = f1(p)f2(p) · · · fr(p). (3.10)

This leads us to the definition of BCH codes:

Definition 3.1 A BCH code is the cyclic code of block-length2 N = qm − 1 with the
generator polynomial

g(p) = LCM [f1(p), f2(p), . . . , f2t(p)] 3 (3.11)

where fj(p) is the polynomial with zero βj ∈ GF(qm) (i.e. fj(βj) = 0) and t is the number
of correctable errors.

As an example we consider a binary BCH code that maps 4 information bits to a
codeword of block-length 7. The number t of correctable errors is 1. Note that all oper-
ations are performed mod 2, since the code is binary. This specific code has a generator
polynomial g(p) = p3 + p2 + 1. For a message x = (1001) the message polynomial x(p)
becomes x(p) = p3 + 1. According to (3.6) the codeword polynomial c(p) for this message
is:

c(p) = (p3 + 1)(p3 + p2 + 1) = p6 + p5 + p2 + 1

and the corresponding codeword can be written as c = (1100101).

At this point we are done with the introduction to BCH codes. In Subsection 4.2.1 a
decoding procedure of BCH codes is presented.

2In this case, the block-length is called to be primitive.
3LCM means Least Common Multiple.
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3.2 Convolutional Codes

A (n,k) convolutional code is generated using a linear finite state shift register as depicted
in Figure 3.1. In general, the shift register consist of K k-bit stages and n linear algebraic
function generators. The binary input data is shifted into and then along the register
- k bits at a time. This way, for each k-bit input sequence a n-bit output sequence is
generated by the encoder so the rate is r = k/n. The parameter K is called the constraint
length of the convolutional code. Two methods for describing convolutional codes will be

to modulator

Encoded sequence

kK stages

k Input bits

n4321

k...21k...21 k...21

Figure 3.1: Convolutional encoder [12]

presented: Generator vectors and the trellis representation.
Block codes can be represented with so called generator matrices, as it is described in
section 3.1. Since the input to a convolutional code is semi-infinite, these matrizes would
be of semi-infinite size, too. As an alternative a convolutional code can be represented
by a functionally equivalent representation as a set of n vectors, one for each function
generator. Each vector has Kk dimensions and specifies the connections between the
function generators and the stages of the encoder, i.e. 1 stands for an existing connection,
0 means there is no connection between the specific stage and function generator. As

INPUT

OUTPUT

2

3

1

Figure 3.2: n = 3, k = 2,K = 2 convolutional encoder

an example consider the rate 2/3 convolutional encoder (n = 3, k = 2,K = 2) in Figure
3.2. In this encoder, k = 2 bits at a time are shifted into it, and n = 3 output bits are
generated with the K = 2 stages. We suppose the registers are both in the all zero state
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INPUT

OUTPUT

1

2

3

Figure 3.3: n=3,k=1,K=3 convolutional encoder

at the beginning. The 2-bit input sequences can be 00, 01, 10 or 11. The resulting output
bits are 000, 010, 111, 101.

Further, suppose we number the outputs from top to bottom. Then we can represent
each output as one of the n vectors described above, i.e. the so called generators for the
code are

g1 = [1011], g2 = [1101], g3 = [1010]

Often, the generators are written in octal form for convenience. For the above example
this results in (13,15,12).

In a trellis diagram, the states the shift register can take, are denoted by nodes, the
transitions between the states are represented by edges between these nodes. In Figure 3.4
a K = 3, rate r = 1/3 encoder and the corresponding trellis diagram are shown. A label on
the edges shows the input and output bit(s) for each transition in the form input/output.
In the beginning there is a transient phase (of K-1 steps) which represents the initial
“filling” of the register from the all zero state. After that the steady state is reached
and every input can lead only to one of the existing states again. (Since there is a limited
number of bits in the register, there is a limited number of possible states, namely 2k(K−1)).
For example, if the first bit is 1, 111 is generated as output and the register contains the
values 100 which defines the current state. I we proceed from there and again shift a 1
into the register it contains 110 now and the ouput is 110, too. Now we shift a zero into
the register, the new state is 011 and the output is 010. We have reached the steady state
now, from here the structure starts repeating itself.

In Section 4.2.2 we will show that the trellis representation is very useful for decoding
convolutional codes.
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Figure 3.4: Trellis for the encoder above
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Chapter 4

Interference Compensation and

Decoding

The main focus of the last two chapters was on the transmitter side. Techniques like
space-time coding, spatial multiplexing and FEC improving link reliability and spectral
efficiency were presented.

In this chapter we focus on the receiver side. We view the receiver as a cascade of
equalizer and channel decoder. First the equalizer compensates inter symbol interference
(ISI) introduced by the channel on the one hand and space-time coding respectively spatial
multiplexing on the other hand. Then the channel decoder decides on what signal has been
transmitted using the knowledge of the redundancy introduced by the FEC.

This chapter will be outlined as follows: First some equalization techniques including
the so called MAP-DFE according to [8] are presented. Then the decoding of BCH codes is
investigated, including a short introduction to decoding of linear block codes. The chapter
terminates with the description of a decoder for convolutional codes.

4.1 Equalization and the MAP-DFE

In order to explain the components of the decoder we consider a communication system
consisting of transmitter, channel and receiver. To be specific, the transmitted symbol
passes through the following stages: First FEC is performed. Then, the symbols are
interleaved, encoded by the LSD encoder and transmitted over the fading channel. The
receiver multiplies the sequence with the so called channel matched matrix, performs LSD
decoding and feds the resulting sequence into the equalizer. In the following, we combine
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Figure 4.1: System consisting of FEC and LSD coding

the influences of LSD encoder, the channel, the multiplication with the channel matched
matrix and the LSD decoder in one matrix ΛISI . Figure 4.1 shows the communication
system described above.

The input sequence at the MAP-DFE can be written as

r = ΛISIα + n. (4.1)

n is the noise after multiplication with the channel matched matrix and LSD decoding.
Consequently, n is in general colored. α denotes the signal vector at the output of the
interleaver. r names the Nc-dimensional vector at the input of the MAP-DFE. ΛISI

concludes the influence of the LSD codes and the channel.

The LSD codes can lead to ISI due to an optimized diversity performance and spatial
multiplexing (i.e. ΛISI is not diagonal). Since this could heavily affect the performance,
ISI compensation is an important task of the decoding process. The component in the
receiver that performs ISI compensation is called equalizer.

In the following we give an overview over some equalization techniques. Then the so
called MAP-DFE according to [8] is considered.

4.1.1 Overview over some Equalization Techniques

The receiver which is optimal in the sense that it minimizes the probability of error is
the maximum likelihood (ML) receiver. However, for large block-lengths this receiver has
a very high decoding complexity and is, therefore, only useful for small block-lengths.
Thus, only suboptimal equalization methods are possible. These can roughly be classified
in linear methods and successive interference cancellation methods, which again can be
divided in serial and parallel methods.

Linear methods like zero forcing (ZF) or minimum mean-square error (MMSE) detec-
tors perform ISI compensation applying a linear transformation (i.e. multiplication with a
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matrix) to the received vector. Successive interference cancellation methods like V-BLAST
[5] or other decision feedback equalizers (DFE) first estimate a certain number of symbols.
After that the influence of the estimated symbols on the remaining symbols is compen-
sated using channel knowledge at the receiver. Then the next symbols are estimated and
so on.

In the following we discuss some of the methods mentioned above.

4.1.1.1 Zero Forcing Equalizer

The zero forcing (ZF) equalizer inverts the channel transfer matrix. Given (4.1), the
estimation of α is:

α̂ = Λ−1
ISIr. (4.2)

Note that it is possible to compute Λ−1
ISI , since ΛISI is quadratic. This equalizer per-

fectly compensates the ISI. However, if the channel has a small gain, then there will be
significant noise enhancement. Therefore, the ZF receiver has only an adequate perfor-
mance in the high SNR regime.

4.1.1.2 Minimum Mean-Square Error Equalizer

The minimum mean-square error (MMSE) equalizer minimizes the error due to interference
and noise. The estimate of α is obtained according to

α̂ = GMMSEr, (4.3)

where GMMSE is

GMMSE =
(
ΛISIΛααΛH

ISI + Λnn

)−1
ΛISIΛαα. (4.4)

Λαα is the correlation matrix of the transmitted symbol vector α and Λnn is the correlation
of the added noise n. In our case Λαα = I, which means that the input symbols are
uncorrelated. Then (4.4) becomes

GMMSE =
(
ΛISIΛH

ISI + Λnn

)−1
ΛISI . (4.5)

Compared to the ZF equalizer the MMSE receiver is less sensitive to noise. In the high
SNR regime the MMSE equalizer converges to the ZF equalizer.
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4.1.1.3 V-BLAST

The V-BLAST is a serial successive interference cancellation method. In contrast to the
ZF and the MMSE equalizer, the V-BLAST first decodes the “strongest” signal, then
subtracts it from the received signal vector r, proceeds to decode the strongest signal of
the remaining signals and so on. The strongest signal is determined based on the knowledge
of the channel gains. (We do not discuss the equalization process of the V-BLAST more
in detail and refer to [5] for more specific informations). In the following subsection we
present an equalizer whose decoding procedure is similar to the V-BLAST but determines
the “strongest” signal based on the a posteriori probabilities.

4.1.2 The MAP-DFE

Like the V-BLAST presented above, the MAP-DFE is also a decision feedback equalizer.
However, in contrast to the V-BLAST the MAP-DFE is able to decode more than one
symbol in one iteration. The equalization procedure is similar to that of the V-BLAST,
i.e. some symbols are decoded, then the influence of those symbols on the remaining
symbols is cancelled, then the next symbols are decoded and so on. In contrast to the
V-BLAST, the order of the cancellation process (i.e. the order of the symbols that are
decoded) is determined based on the a posteriori error probabilities. The cancellation
procedure goes as follows:

1. MMSE estimation of all symbols in consideration of ΛISI .

2. Determining the a posteriori error probabilities of all still not decoded symbols on
the basis of the MMSE estimation.

3. Determining the segment of the symbols that will be jointly decoded on the basis of
the a posteriori error probabilies.

4. Deciding the symbols of the segment of step 3.

5. Compensation of the interference of all symbols of step 4 on the remaining not
decoded symbols.

6. Proceed to step 1 unless all symbols are decoded.

Figure 4.2 shows the compensation process described above. First an MMSE estima-
tion is performed according to (4.5). Then, based on this estimation, the a posteriori error
probabilities of the symbols are determined. Note that the error probabilities depends on
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Figure 4.2: Interference compensation process of the MAP-DFE
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the symbol alphabet used. Assume that α is the vector of the estimated symbols. Then
the a posteriori error probability of a received 2-PSK symbol is

Pe,2−PSK =

(
1 + e

2|α|
√

Eb

σ2
n

)−1

, (4.6)

where σ2
n is the variance of the noise after MMSE equalization, |α| is the absolute value

of the estimated amplitude of the symbol and Eb is the energy per bit. In order to obtain
(4.6) we approximated the noise with AWGN, although the noise is colored.

The probability of error for 4-QAM can be approximated as:

Pe,4−QAM = (1− P
(I)
e,2−PSKP

(Q)
e,2−PSK)

= P
(I)
e,2−PSK + P

(Q)
e,2−PSK − P

(I)
e,2−PSKP

(Q)
e,2−PSK . (4.7)

For (4.7) we view 4-QAM as two 2-PSK signals I and Q (inphase and quadrature compo-
nent) with statistically independent noise and independent error probabilities. (Of course,
it is also possible to compute the error probabilities for higher symbol alphabets like
16-QAM or 64-QAM. We leave it to the reader to calculate those probabilities.)

After calculating these probabilities, a segment of estimated symbols is decoded par-
allelly. This segment consists of a variable number of symbols with an a posteriori error
probability below a certain threshold Pe,threshold. If all symbols have a an error probability
higher than this threshold, only the symbol with the lowest error probability is decoded.
After that, the influence of these decoded symbols on the remaining symbols is canceled
using the knowledge of ΛISI . Then again an MMSE estimation of the symbols is per-
formed, followed by the computation of the a posteriori error probabilities of all remaining
symbols. The process stops when all received symbols are decoded. As sketched in Fig-
ure 4.2 the error probabilities of the decoded symbols are available for further use at the
receiver.

A characteristic of the MAP-DFE is that a variable number of symbols can be decoded
parallelly. The idea is that if the probability of an error is small, then there is no need
to decode only one symbol per iteration. Consequently, interference compensation can be
done with less iterations which yields a lower complexity. (Note that in every iteration
an MMSE estimation is performed which requires a matrix inversion.) The threshold
Pe,threshold determines the complexity of the decoder. If Pe,threshold is large, many symbols
are decoded parallelly and, hence, the the complexity is low. However, it is more likely to
have an erroneous symbol. On the other hand, if Pe,threshold is small, only a few symbols
are decoded together which results in a higher complexity but leads to a lower error
probability.
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Figure 4.3: System with FEC encoder and decoder

It should be noted that for Pe,threshold = 1 the MAP-DFE only performs one iteration.
In this case, the MAP-DFE becomes an MMSE equalizer. In contrast, if Pe,threshold =
0, only the symbol with the lowest error probability is decoded which yields the best
performance in terms of error rate.

As mentioned above, there exists a tradeoff between performance (i.e. small error
probability) and complexity. In Chapter 6 this tradeoff is investigated.

4.2 Channel Decoding

In the last section several equalization techniques and in particular the MAP-DFE are
discussed. Now we consider the channel decoder. To be specific, we investigate decoders
for both BCH and convolutional codes. For this purpose, the components between FEC
encoder and FEC decoder are viewed as one channel that transmits symbols from the
encoder to the decoder and introduces some errors. The resulting system is shown in
Figure 4.3.

In order to keep track of our project, we use FEC decoders performing hard-decision.
A hard-decision decoder maps a real-valued signal into a sequence of bits, where every bit
is either 1 or 0. Consequently, information is lost. It is intuitively clear that one could
reach a lower probability of error by considering all the information available. Therefore,
hard-decision decoders are suboptimal.

The best way of performing hard-decision decoding is minimum distance decoding. In
mininum distance decoding, the hamming distance between the received bit sequence and
all possible codewords is computed. The decoder decides on that codeword that leads
to the minimum distance. This decoder is optimal in the sense that it minimizes the
probability of a codeword error for the binary symmetric channel.

Figure 4.4 shows a binary symmetric channel. In a binary symmetric channel, both
the transmitted and the received bit can only have the values 1 or 0. The values on the
transitions denote the probability p(y|x) of the received bit y given the transmitted bit x.
The value ε can be interpreted as the probability of a bit error. For example if a 1 was
transmitted, the probability of receiving a 0 is ε, the probability of receiving a 1 is 1− ε.
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Figure 4.4: Binary symmetric channel

The probability p(y|c) can be written as

p(y|c) = (1− ε)N−i εi, (4.8)

where i is the number of bits with y 6= x and N is the block-length of the code, i.e. the
vector y has N components. If we assume ε < 1

2 , (4.8) is maximized by minimizing i

which leads us to minimum distance decoding.

In the following an overview over decoders for both BCH codes and convolutional codes
is given.

4.2.1 BCH Codes

As mentioned above, minimum distance decoding minimizes the probability of a codeword
error for the binary symmetric channel. In order to implement a minimum distance de-
coder, one could compute the hamming distance of the received bit sequence to all possible
codewords. However, there exist 2k different codewords, so for a large codebook size (i.e.
the number of different codewords in a particular code), this is not feasible anymore.

In the next part, we show a way of decoding that is easier to realize, the so called
syndrome decoding. Then, we present a decoder that does syndrome decoding for BCH
codes.

4.2.1.1 Syndrome Decoding

As stated before, in order to perform minimium distance decoding, one has to compute
2k distances and choose the codeword that leads to the minimum distance. However, it is
possible to implement a decoder managing with a look-up-table with 2N−k entries.

Let y denote the received bit sequence. y can be written as the sum of the transmitted
codeword and an error introduced by the channel:

y = c + e. (4.9)
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Note that all operations are performed in the galois field GF(q). By multiplying the
received sequence y with the parity check matrix H, the N − dimensional vector y is
projected onto an (N − k)− dimensional vector s:

s = yHT

= (c + e)HT

= cHT + eHT

= eHT . (4.10)

The last equality follows by (3.2). The vector s is called a syndrome. Note that the
syndrome s is only a function of the error e and does not depend on the codeword c.

In order to build a decoder one can create a look-up-table containing all possible
syndromes s and the corresponding error patterns e. The decoding procedure goes as
follows:

1. Compute the syndrome s = yHT .

2. Determine the estimated error ê using the look-up-table.

3. Compute the estimated codeword ĉ = y + ê.

As an example, we again consider the binary (7, 4) hamming code with generator ma-
trix G and parity check matrix H described in Subsection 3.1.1. Again, the 4 information
bits are x = (1101). Assuming we receive y = (1111001), the syndrome s can be computed
according to (4.10) which yields s = (110). Making use of the look-up-table, we obtain for
the estimated error ê = (0010000). From the addition y + ê follows ĉ = (1101001) which
is equal the codeword c in Subsection 3.1.1.

Because a syndrome is an (N − k) − dimensional vector, there exist 2N−k different
syndromes. Consequently, the decoder is able to manage with a look-up-table with 2N−k

entries as mentioned before.

4.2.1.2 Decoders for BCH Codes

Syndrome decoding is able to deal with a look-up-table with (N − k) entries. However,
one needs a look-up-table for any particular code. Such a decoder is not very flexible.
For BCH codes, there exist syndrome decoders that deal without a look-up-table. In
the following we discuss the Peterson-Gorenstein-Zierler decoder that is not optimal in
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respect of complexity but gives us a good understanding of how a decoding procedure
for BCH codes could be implemented. In addition, decoders with less complexity can be
deduced from this decoder. Note that BCH codes are cyclic and we use, for convenience,
the polynomial description.

Assume, that y(p) is the received bit sequence. According to (4.9), y(p) can be written
as

y(p) = c(p) + e(p), (4.11)

where e(p) = eN−1p
N−1 + eN−2p

N−2 + . . . + e1p + e0 is the error polynomial.

From the definition of the BCH codes follows that the generator polynomial g(p) has
the zeros β, β2, . . . , β2t. It can be shown that

c(β) = c(β2) = . . . = c(β2t) = 0 (4.12)

if and only if c(p) is a codeword polynomial [3]. Therefore, the syndrome Sj can be
computed as follows:

Sj = y(βj) = c(βj) + e(βj) = e(βj), for j = 1, . . . , 2t. (4.13)

If we assume that ν errors occur at error locations i1, i2, . . . , iν , the error polynomial
can be written as

e(p) = ei1p
i1 + ei2p

i2 + . . . + eiν−1p
iν−1 + eiν piν . (4.14)

With (4.13), (4.14) and the substitutions Xl = βil and Yl = eil
1, we get the following

system of nonlinear equations:

S1 = Y1X1 + Y2X2 + . . . + YνXν

S2 = Y1X
2
1 + Y2X

2
2 + . . . + YνX

2
ν

...
...

...
...

S2t = Y1X
2t
1 + Y2X

2t
2 + . . . + YνX

2t
ν .

(4.15)

Note that Xl is unknown since one does not know the error location il.

In order to solve (4.15), we use the error-locator polynomial Λ(p) that is zero for
p = X−1

1 , X−1
2 , . . . , X−1

ν :

Λ(p) = Λνp
ν + Λν−1p

ν−1 + . . . + Λ1p + 1

= (1− pX1) (1− pX2) · · · (1− pXν) (4.16)

1Yl is called the error magnitude.
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Using (4.15) and (4.16), one obtains a system of linear equations:


S1 S2 · · · Sν−1 Sν

S2 S3 · · · Sν Sν+1

...
...

. . .
...

...
Sν Sν+1 · · · S2ν−2 S2ν−1


︸ ︷︷ ︸

M


Λν

Λν−1

...
Λ1

 =


−Sν+1

−Sν+2

...
−S2ν .

 (4.17)

It can be shown that for a proper choice of the number of errors ν, the matrix M is
nonsingular and, therefore, this system of equations can be solved.

The procedure of the Peterson-Gorenstein-Zierler decoder, shown in Figure 4.5, goes as
follows. First the syndromes S1, . . . , S2t are computed. Then the error-locator polynomial
Λ(p) is determined solving (4.17). By finding the zeros of Λ(p) one obtains the error
locations X1, . . . , Xν . Solving (4.15) yields the error magnitudes Y1, . . . , Yν that are needed
to decode the codeword.

As mentioned above this decoder is not optimal in regard of complexity. The reason is
that in this decoding procedure two matrix inversions need to be performed. Since matrix
inversions have a high complexity, better decoders can be deduced from the Peterson-
Gorenstein-Zierler decoder by finding a way to get by without those inversions.

One approach is to obtain the error-locator polynomial Λ(p) using the Berlekamp-
Massey algorithm, shown in Figure 4.6. The Berlekamp-Massey algorithm interprets (4.17)
as the equation of the output of a shift register circuit and tries to find the shift register
with smallest length. (For a more detailed explanation see [3].)

Another appproach uses the Forney algorithm in order to find the error magnitudes.
However, if the BCH code is binary the error magnitudes are always 1 and it is sufficient
to know the error locations i1, . . . , iν . In that case, the decoding procedure is finished after
finding the zeros of Λ(p).

Figure 4.7 shows a decoding procedure for BCH codes that gets by without any matrix
inversions. It is based on the Peterson-Gorenstein-Zierler decoder but uses the Berlekamp-
Massey algorithm and the Forney algorithm in order to avoid matrix inversions.

With the decoder shown in Figure 4.7 an efficient decoder for BCH codes is presented.
In Section 5.2 we investigate the complexity of this decoders.
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Figure 4.5: Peterson-Gorenstein-Zierler decoder
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Figure 4.6: Berlekamp-Massey algorithm
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Figure 4.7: Fast decoding of BCH codes
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4.2.2 Convolutional Codes

For decoding data encoded with convolutional codes we use the Viterbi algorithm on a
trellis. In Figure 3.4 a trellis is given as an example. For every edge e in a trellis we write
lst(e) for the left state, rst(e) for the right state of e and µ(s) stands for the metrics at
the the state s. The Viterbi algorithm is defined as follows:

Initialisation: µ(s) = 0 for every starting state s

Calculation of metrics in every state:

µ(s) = min
Edges e with rst(e)=s

µ(lst(e)) + µ(e) (4.18)

A detailed discussion of the Viterbi algorithm can be found in [12] for example.
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Chapter 5

Complexity

In the last chapter a new equalization algorithm according to [8] (i.e. the MAP-DFE)
and decoders for both BCH and convolutional codes are discussed. Two main criteria for
a good equalizer respectively decoder are the performance in terms of error probability
and the decoding complexity. In this chapter we focus on the complexity. We derive
the decoding complexity in terms of multiplication and additions. In order to compare
multiplications and additions we refer to [13] where it is stated that multiplication needs
a chip-area 26-times larger than addition at same speed. Therefore, we assume that one
addition equals 26 multiplications.

In the following, first the complexity of the MAP-DFE is derived. Then we discuss the
complexity of BCH codes followed by the discussion of the complexity of convolutional
codes.

5.1 MAP-DFE

In Subsection 4.1.2 the MAP-DFE is presented. The equalization procedure can be out-
lined as follows:

1. MMSE estimation of all still not decoded symbols.

2. Determining the a posteriori error probabilities of all still not decoded symbols.

3. Determining the segment of the symbols that will be jointly decoded.

4. Deciding the symbols of the segment of step 3.
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5. Compensation of the interference of all symbols of step 4 on the remaining not
decoded signals.

6. Proceed to step 1 unless all symbols are decoded.

According to [15] a multiplication of two (N ×N)-matrices can be done at the cost of

N3

2
+ N2 multiplications

and
3N3

2
+ 2N(N − 1) additions

using the algorithm of Winograd [15].

The inverse of an (N × N)-matrix can be computed by Gaussian elimination. In
general, Gaussian elimination can be used in order to solve the equation AX = B. The
key idea is to divide A into a lower triangular matrix L and an upper triangular matrix U
and to split up the problem into two equations with L and U. Here, this procedure is not
discussed in more detail. For further information we refer to [6]. In order to compute the
inverse of an (N ×N)-matrix A, one can solve the equation AX = B for B = IN which
leads to X = A−1. This procedure requires

N

3
(
2N2 + 3N − 2

)
multiplications and the same amount of additions [15]. The multiplication of an K-
dimensional vector with an (N × K)-matrix needs NK multiplications and (NK − N)
additions. In the following we derive the decoding complexity of the MAP-DFE in terms
of multiplications and additions. Note that all additions and multiplications in this section
are performed on complex numbers.

In a first step, the MAP-DFE performs an MMSE estimation on the received symbols.
The MMSE matrix GMMSE according to (4.5) is(

ΛISIΛH
ISI + Λnn

)−1
ΛISI .

ΛISI and ΛISI are (Nc × Nc)-matrices, where Nc is the dimension of the received vector
r. The computation of the MMSE matrix requires, therefore,

2
(

N3
c

2
+ N2

c

)
+

Nc

3
(
2N2

c + 3Nc − 2
)

=

5
3
N3

c + 3N2
c −

2
3
Nc (5.1)
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multiplications and

2
(

3
2
N3

c + 2Nc(Nc − 1)
)

+
Nc

3
(
2N2

c + 3Nc − 2
)

+ N2
c =

11
3

N3
c + 5N2

c −
14
3

Nc (5.2)

additions, where N2
c in the first line in (5.2) is the number of required additions to compute

the sum ΛISIΛH
ISI + Λnn. In order to perform an MMSE estimation, one has to multiply

the received vector r with the (Nc × Nc)-MMSE matrix GMMSE . This requires N2
c

multiplications and (N2
c −Nc) additions.

Note that it is possible to reduce the dimension of the MMSE matrix GMMSE with
every decoded symbol. Hence, the computed decoding complexity of the MMSE estimation
is only exact if just one iteration is required (i.e. Pe,threshold = 0). Otherwise the computed
complexity is an upper bound.

In a next step, the a posteriori error probabilities need to be computed. For a received
4-QAM symbol, this could be done using (4.6) and (4.7). However, (4.6) requires the
evaluation of an exponential function, which is rather complex. Therefore, we assume
that the error probabilities can be determined using a look-up-table and, consequently,
the required operations are neglectable.

The required operations in step 3 and 4 are neglected, too. In step 5 the interference of
the decoded symbols on the remaing symbols needs to be cancelled. In order to do so, first
one has to compute r̃ = ΛISI(:,k)α(k), where k is the index vector containing all indices
of the decoded symbols. Then, the interference is compensated by subtracting r̃ from r.
Assume that |k| denotes the number of elements in k. Then, the multiplication of vector
α(k) with matrix ΛISI(:,k) requires Nc|k| multiplications and (Nc|k| − Nc) additions.
The substraction of r̃ from r needs |k| more additions.

The decoding complexity of one iteration of the MAP-DFE then results in:

5
3
N3

c + 4N2
c +

(
|k| − 2

3

)
Nc multiplications (5.3)

and
11
3

N3
c + 6N2

c +
(
|k| − 20

3

)
Nc additions. (5.4)

Assume that ϑ denotes the number of required iterations and ¯|k| denotes the average
number of elements in k. ϑ can be expressed as:

ϑ =
Nc

¯|k|
. (5.5)
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Figure 5.1: Decoding complexity of the MAP-DFE in terms of additions

Using (5.5) leads to the average decoding complexity of the MAP-DFE:

ϑ

(
5
3
N3

c + 4N2
c +

(
¯|k| − 2

3

)
Nc

)
multiplications (5.6)

and
ϑ

(
11
3

N3
c + 6N2

c +
(

¯|k| − 20
3

)
Nc

)
additions. (5.7)

As stated before, one addition equals 26 multiplications. Consequently, the decoding
complexity in terms of additions becomes

ϑ
(
47N3

c + 110N2
c +

(
27 ¯|k| − 24

)
Nc

)
(5.8)

(complex) additions.

Figure 5.1 shows the decoding complexity of the MAP-DFE in terms of (complex)
additions. The lowermost curve corresponds to the MMSE estimation where only one
iteration is required. This case leads to the minimum complexity. The uppermost curve
shows the decoding complexity if ϑ = Nc. The curve in between corresponds to ϑ = Nc/4.
We will show in Chapter 6 that for Pe,threshold ≥ 10−8 and Nc = 8, the MAP-DFE requires
less than 2 iterations on average in the high SNR regime. Hence, the consideration of the
decoding complexity corresponding to ϑ = Nc/4 is reasonable.

It should be noted that only the lowermost curve shows the exact decoding complexity.
The other curves are upper bounds.
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5.2 BCH Codes

In Subsection 4.2.1 the decoder for BCH codes is discussed. Here we want to derive the
decoding complexity of those codes. The decoding complexity is expressed in terms of
additions and multiplications. Note that all additions and multiplications in this section
are performed on real numbers.

In order to decode data encoded with BCH codes, we use the decoder shown in Fig-
ure 4.7. The decoding procedure can be outlined as follows:

1. Compute the syndromes Sj = y(βj).

2. Determine the error-locator polynomial Λ(p) using the Berlekamp-Massey algorithm.

3. Find the zeros p1, p2, . . . , pν of Λ(p).

4. Identify the error locations i1, i2, . . . , iν by using the fact that pl = X−1
l = β−il .

5. Determine ˆc(p) by flipping the bits at the positions i1, i2, . . . , iν .

Note that we assume the received sequence y(p) to be binary. Therefore, all error
magnitudes Y1, Y2, . . . , Yν are one and, consequently, it is sufficient to know the error
locations. (The decoder shown in Figure 4.7 uses the Forney algorithm in order to compute
the error magnitudes; in the binary case we can omit this step.)

In the following we want to analyze every step in this decoding procedure. For those
who are not interested in the whole derivations we refer to Subsection 5.2.4.

5.2.1 The Syndromes

In order to compute the syndromes, one has to evaluate the polynomial of the received
sequence y(p) at positions β1, β2, . . . , β2t. According to Horner’s scheme [2] every compu-
tation y(βj) can be done in κ multiplications and the same amount of additions, where κ

is the degree of the polynomial y(p). Therefore, in order to compute y(βj) for a code of
length N , there are (N − 1) multiplications and additions required.

Considering the fact that y(p) needs to be evaluated at 2t different positions, the
computation of the syndromes requires

2t(N − 1) (5.9)

multiplications and additions, where t is the number of correctable errors.
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5.2.2 The Berlekamp-Massey Algorithm

The next step of the decoding procecure is the computation of the error-locator polynomial
using the Berlekamp-Massey algorithm. The complexity of this algorithm in terms of
additions and multiplications is derived in [7]. In the following we present the results:

Let t be the number of correctable errors and assume the syndromes S1, S2, . . . , Sν to
take values in {0, 1, . . . , p − 1}. Moreover, define ñ = 2t. Then the Berlekamp-Massey
algorithm needs on average

1
2
ñ(ñ + 1)− 1

4
ñp−1 (5.10)

multiplications and the same amount of additions.

In the case of BCH codes of length N , the syndromes take values in {0, 1, . . . , N}, so
p = N + 1. In this case, (5.10) becomes

1
2
ñ(ñ + 1)− 1

4
ñ2 1

N + 1
=

1
2
ñ2 +

1
2
ñ− 1

4
ñ2 1

N + 1

=
1
2
ñ2

(
1− 1

2(N + 1)

)
+

1
2
ñ. (5.11)

Using ñ = 2t the average decoding complexity becomes

1
2
(2t)2

(
1− 1

2(N + 1)

)
+

1
2
(2t) = 2t2

(
1− 1

2(N + 1)

)
+ t (5.12)

multiplications and additions.

5.2.3 The Zeros of the Error-Locator Polynomial

By finding the zeros of the error-locator polynomial Λ(p) one is able to identify the error
locations i1, i2, . . . , iν . We determine the zeros by computing

Λ(βj), j = 1, . . . , 2t (5.13)

and checking if (5.13) is zero. This procedure is called Chien search [3]. The Chien search
can be performed using Horner’s scheme. The error-locator polynomial Λ(p) has degree
ν, where ν is number of errors occured. If we assume that all errors can be corrected,
then ν ≤ t. Therefore, the evaluation of Λ(βj) requires less than t multiplications and
additions. Hence, the zeros of Λ(p) can be found at the cost of

t(2t) = 2t2 (5.14)

multiplications and the same amount of additions.
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Note that the error-locator polynomial Λ(p) has the zeros

p1 = X−1
1 = β−i1

p2 = X−1
2 = β−i2

...
...

pν = X−1
ν = β−iν .

(5.15)

By knowing p1, . . . , pν , the error locations i1, . . . , iν can easily be identified using a
look-up-table. Therefore, the required operations to evaluate the error locations can be
neglected.

5.2.4 Decoding Complexity of BCH Codes

As stated above the decoding procedure of BCH codes goes as follows:

1. Compute the syndromes Sj = y(βj).

2. Determine the error-locator polynomial Λ(p) using the Berlekamp-Massey algorithm.

3. Find the zeros p1, p2, . . . , pν of Λ(p).

4. Identify the error locations i1, i2, . . . , iν by using the fact that pl = X−1
l = β−il .

5. Determine ĉ(p) by flipping the bits at the positions i1, i2, . . . , iν .

We have shown that the computation of the syndromes needs

2t(N − 1)

multiplications and additions. Additionally, the Berlekamp-Massey algorithm needs

2t2
(

1− 1
2(N + 1)

)
+ t

operations. The zeros of the error-locator polynomial Λ(p) can be determined at the cost
of

2t2

operations. The flipping of the bits can be done with ν bit additions, whereas ν ≤ t.
Consequently, the decoding complexity of BCH codes follows as:

2t(N − 1) + 2t2 + t2
(

1− 1
2(N + 1)

)
+ t + t =

2
(

3− 1
2(N + 1)

)
t2 + 2tN (5.16)
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multiplications and the same amount of additions.

As stated before, we assume that one addition equals 26 multiplications. Therefore,
the decoding complexity of BCH codes in terms of additions becomes

54
(

3− 1
2(N + 1)

)
t2 + 54tN (5.17)

real additions.

5.3 Convolutional Codes

In the following section we want to express the decoding complexity for convolutional
codes in terms of the number of arithmetic operations.

For decoding data encoded with convolutional codes we use the Viterbi algorithm on a
trellis as described in Section 4.2.2. For a (n,k) convolutional code with constraint length
K the number of possible states is 2k(K−1). The number of incoming edges at each state
is 2k as soon as the steady state has been reached. (After the steady state the structure
of the trellis keeps repeating as can be seen in Figure 3.4).

The number of nodes in the trellis follows as

N2k(K−1) − 2(K − 1)2k(K−1) + 2
K−2∑
i=0

2ik = (N − 2(K − 1))2k(K−1) +
K−2∑
i=0

2ik+1 (5.18)

We use k=1 why (5.18) simplifies to

(N − 2(K − 1))2(K−1) +
K−1∑
i=1

2i (5.19)

Before decoding using the Viterbi algorithm we need to label the edges. Since we use
hard decision decoding this means calculating a Hamming distance at each edge. After
the steady state this corresponds to 2k additions per node, for the nodes before the steady
state (i.e. the nodes with depth ≤ K − 1) there is only one incoming edge per node, so
there is one addition. (Since with each k-bit-sequence that is shifted into the register a
new state is reached). Expressed in a formula
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(N − 2(K − 1))2k(K−1)2k +
K−2∑
i=0

2ik2k +
K−2∑
i=0

2ik =

(N − 2(K − 1))2k((K−1)+1) +
K−2∑
i=0

2k(i+1) +
K−2∑
i=0

2ik =

(N − 2(K − 1))2kK +
K−2∑
i=0

2k(i+1) +
K−2∑
i=0

2ik =

(N − 2(K − 1))2kK +
K−1∑
i=1

2ik +
k−2∑
i=0

2ik =

(N − 2(K − 1) + 1)2kK + 1 +
K−2∑
i=1

2ik + 2k(K−1) (5.20)

The second step in decoding consists of choosing the best incoming edge for each node,
which means calculating 2k sums and comparing the resulting 2k values:

2k + 2k − 1 = 2 · 2k − 1 = 2k+1 − 1 (5.21)

This means 2k+1−1 additions per node. Again, this is valid for the nodes after the steady
state - before, there is only one incoming edge per node which means calculating only one
addition and no comparison.

(N − 2(K − 1))2k(K−1)(2k+1 − 1) +
K−2∑
i=0

2ik(2k+1 − 1) +
K−2∑
i=0

2ik =

(N − 2(K − 1))(2kK+1 − 2kK−k) +
K−2∑
i=0

(2ik+k+1 − 2ik) +
K−2∑
i=0

2ik =

(N − 2(K − 1))2kK(2− 2−k) +
K−2∑
i=0

2k(i+1)+1 =

(N − 2(K − 1))2kK(2− 2−k) +
K−1∑
i=1

2ik+1 (5.22)

By adding (5.20) and (5.22) the complexity (expressed in the number of additions) for
decoding with the Viterbi algorithm on a trellis follows as
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2kK [(N − 2(K − 1) + 1) + (N − 2(K − 1))(2− 2−k)]
K−1∑
i=1

2ik+1 +
K−2∑
i=1

2ik + 2k(K − 1)1 =

2kK [(N − 2(K − 1))(3− 2−k) + 1] +
K−2∑
i=1

(2ik+1 + 2ik) + 2k(K−1) + 1(5.23)

For k=1 (5.23) can be simplified again

2K((N − 2(K − 1))2.5 + 1) +
K−2∑
i=1

(2i2i+1) + 2K−1 + 1 (5.24)



Chapter 6

Simulation and Results

The goal of this project was the investigation of a communication system using forward
error correction, space-time coding and spatial multiplexing in order to improve link re-
liability and spectral efficiency. The components like FEC, LSD codes or MAP-DFE
have a lot of parameters that need to be defined. To be specific, some parameters are
FEC code-rate, block-length, constraint length of the convolutional code, number of sub-
channels and achieved diversity order, number of transmit and receive antennas, the tresh-
old Pe,threshold of the MAP-DFE and some more. Consequently, there is a large range of
optimization.

In the following we discuss some of the tradeoffs choosing those parameters. In Sec-
tion 6.1 the MAP-DFE is investigated. Section 6.2 analyzes the tradeoff between de-
coding complexity and performance of BCH and convolutional codes. In Section 6.3 the
influence of LSD codes and FEC on systems using pure transmit diversity (i.e. only one
antenna at the receiver) are studied. In Section 6.4 the tradeoff between the choice of the
symbol-alphabet and the number of used subchannels is discussed. And finally, Section 6.5
investigates the tradeoff between the code-rate and spatial multiplexing.

6.1 The MAP-DFE

As we can see in Section 5.1, the decoding complexity of the MAP-DFE depends linearly
on the number of required iterations ϑ. In a first step, we want to determine the number
of average iterations in function of the threshold Pe,threshold and of Eb

N0
and investigate the

influence on the symbol error rate. For this purpose we consider a system with 4 transmit
and receive antennas. The LSD code has an outer code dimension Nc = 8 (i.e. the input
vector r of the MAP-DFE introduced in Section 4.1 contains 8 elements), therefore, 8
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is the maximum number of iterations. Simulations with Nu = 4 subchannels and 4-
QAM symbols as well as simulations with Nu = 2 subchannels and 16-QAM symbols are
performed. It can easily be verified that both systems achieve the same throughput.

In Figures 6.1 and 6.3 the average number of iterations required by the MAP-DFE
is shown in function of Eb

N0
and the threshold Pe,threshold. Figures 6.2 and 6.4 show the

influence of the threshold on the symbol error rate for different Eb
N0

-values. The uppermost
curve corresponds to the smallest Eb

N0
-value, namely Eb

N0
= −3 dB. The lowermost curve

corresponds to the largest Eb
N0

, namely Eb
N0

= 9dB.

We can see that in the high SNR regime (i.e. Eb
N0

is large) the MAP-DFE requires less
than 2 iterations for a threshold Pe,threshold ≤ 10−8. The reason is that if Eb

N0
is large

the probability of a symbol error is small, and, therefore, many symbols can be decoded
jointly. This is an advantage compared to the V-BLAST equalizer according to [5], since
V-BLAST decodes only one symbol per iteration even if the SNR is large.

By comparing both considered systems with Nu = 4 and Nu = 2, we can see that the
MAP-DFE needs in both cases many iterations in the low SNR regime (i.e. Eb

N0
is small)

and/or in the region where the threshold Pe,threshold is small. With increasing Eb
N0

and/or
increasing threshold, the number of iterations required decreases. However, the system
using 2 subchannels has a steeper slope. This can be explained by the fact that 16-QAM
requires a larger Eb

N0
-value than 4-QAM in order to achieve an adequate performance.

Therefore, in the low SNR regime the system with Nu = 2 subchannels requires more
iterations. In the high SNR regime, the advantage of the higher diversity order can be
exploited. (Note, that the LSD codes use the remaining antennas that are not used for
spatial multiplexing for diversity. Therefore, the less subchannels are used, the higher the
diversity order.)

This behavior can also be observed by comparing Figures 6.2 and 6.4. In general, it
can be stated that the lower the symbol error rate, the more the performance depends
on the treshold Pe,threshold. The reason is that if Eb

N0
is small, then the probability of a

symbol error is large and, consequently, the additional error introduced by choosing a
higher threshold is small. However, if Eb

N0
is large, then the probability of a symbol error

is low and, therefore, the choice of Pe,threshold gains in importance. As stated before, in
the high SNR regime only a few iterations are required in order to decode the symbols.
Therefore, in this case it is reasonable to choose a small threshold Pe,threshold. In the low
SNR regime the influence of the threshold on the symbol error rate is small and hence, it
is reasonable to choose a large threshold in order to reduce the decoding complexity.

In order to determine the threshold that is optimum in terms of symbol error rate
and decoding complexity, one has to choose the threshold at the sharp bend in the curve.
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Figure 6.1: Average number of iterations of the MAP-DFE.
NTX = 4, NRX = 4, Nu = 4, 4−QAM
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Figure 6.2: Symbol error rate at the output of the MAP-DFE in function of the threshold
Pe,threshold. NTX = 4, NRX = 4, Nu = 4, 4−QAM
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Figure 6.3: Average number of iterations of the MAP-DFE.
NTX = 4, NRX = 4, Nu = 2, 16−QAM
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Figure 6.4: Symbol error rate at the output of the MAP-DFE in function of the threshold
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Obviously, the optimal threshold depends on the Eb
N0

-value. For Eb
N0

= 9 dB the optimal
threshold Pe,threshold is 10−3. If we choose a smaller threshold, there is no significant
improvement in terms of symbol error rate but the MAP-DFE has a higher decoding
complexity due to the lower threshold that results in a higher number of required iterations.
On the other hand, if we choose the threshold larger, the symbol error rate increases
significantly. Hence, Pe,threshold = 10−3 is optimum for Eb

N0
= 9dB. For Pe,threshold = 10−3

and Eb
N0

= 9 dB, the MAP-DFE requires on average only 1.4 and ϑ = 1.1 iterations for
Nu = 4 respectively Nu = 2 compared to 8 iterations in the case where Pe,threshold = 0.
This yields a complexity that is about 6-times smaller.

In a last step, we analyze the symbol error rate in function of Eb
N0

. Figures 6.5 and 6.6
show the symbol error rate for different values of the threshold Pe,threshold. For comparison,
in Figure 6.5 also the symbol error rate of the V-BLAST using MMSE nulling is shown.
The uppermost curve shows the symbol error rate of the MAP-DFE with Pe,threshold =
1 and corresponds to the MMSE estimation. The best performance in terms of error
pobability is achieved for Pe,threshold = 0.

One can see that the performance attained with Pe,threshold = 10−3 is nearly as good
as the optimal performance. Furthermore, for Nu = 4 used subchannels the symbol error
rate for threshold Pe,threshold = 10−2 is near to the optimum until Eb

N0
= 5 dB. Then,
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the curve corresponding to Pe,threshold = 10−2 deviates from the optimal curve. This is
an indication of choosing the threshold too large. This can also be observed considering
Figure 6.2. In addition, we can see in Figure 6.5 that for a proper choice of the threshold,
the MAP-DFE outperforms the V-BLAST.

By comparing Figures 6.5 and 6.6 it can be observed that in the high SNR regime
the system using Nu = 2 subchannels in combination with 16-QAM symbols outperforms
the system, using Nu = 4 subchannels and 4-QAM symbols. This can be explained by
the fact that in the high SNR regime the achieved diversity gain has a wider influence on
the performance than the large symbol-alphabet. It should be noted that symbol error
rates of 4-QAM and 16-QAM symbols are compared, which in general can lead to a false
interpretation. However, in our simulations Gray-coding is used in order to map the bits
to the symbols and, consequently, in the high SNR regime 1 symbol error implies only 1
bit error. Hence, in the high SNR regime the symbol error rate curves for 4-QAM and
16-QAM are comparable.

From the results shown above, it follows that in the region we are interested in (i.e. sym-
bol error rate between 10−3 and 10−4), Pe,threshold = 10−3 is optimum in terms of error
probability and decoding complexity. In the following, unless otherwise noted, all simula-
tions are performed with Pe,threshold = 10−3.
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6.2 FEC Performance and Complexity Comparison

As described in Chapter 5 BCH and convolutional codes were chosen to act as examples for
possible FEC codes. Before we present our results, we explain how we set our parameters.

For the convolutional codes we chose two different configurations, one with 16 states the
other with 64. To be precise, a (n = 2, k = 1,K = 5) code with octal generator polynomial
(23,33) was implemented. This code was adopted by the GSM standardization committee
in 1982 [10]. A more complex and powerful convolutional code with (n = 2, k = 1,K = 7)
and octal generator polynomial (171,133) was implemented as comparison. This code was
employed by the DVB [10] standard for television, sound, and data services.

The BCH code (unlike the convolutional code) is a block code, thus our first BCH-
configuration is defined as a block of 511 coded bits for 259 information bits and t = 30
correctable errors. A second configuration consists of a block-length of 255 bits for 131
information bits and t = 18. To compare the BCH code and the convolutional code,
a bit sequence of approximately the same length (512 coded bits) was passed to the
convolutional decoder. A direct comparison of the bit error rates is given in Figures 6.7
and 6.8 for 2 and 4 subchannels, respectively. For both configurations the FEC code-rate is
held constant at r = 1/2 with 16-QAM and 4-QAM for 2 and 4 subchannels, respectively.
The outer code dimension of the LSD code was Nc = 8, NTX = NRX = 4 transmit and
receive antennas.

It is clearly visible that the BCH codes perform better in both cases, however at the
cost of higher complexity, as will be shown below. Further it can be stated that for low SNR
the performance of the low complexity codes is equal or higher. This means investments in
code complexity are rewarded in the high SNR regime after the intersection of the low- and
high-complexity curves for both BCH and convolutional codes. For the range considered it
follows from comparing both figures that the configuration with 4 subchannels and smaller
symbol-alphabet size (i.e 4-QAM) outperforms the configuration with 2 subchannels and
higher symbol-alphabet size (rember that the rates are held constant).

For a detailed comparison of the codes not only the performance but also the complex-
ity needs to be considered. As described in Chapter 5 the complexity is expressed in the
number of additions necessary to decode these bits. The complexity can be calculated as
in (5.24) for the convolutional codes and (5.17) for the BCH codes. Note that for a fair
comparison of the BCH code with block-length 255 and the other codes its complexity
needs to be doubled - due to the blocksize 255 which is only half as large as the others.
The numeric results are listed in Table 6.1.

Clearly, the convolutional codes have a much lower complexity than the BCH codes.
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code complexity (No. of additions)

BCH, N=511 974 · 103

BCH, N=255 600 · 103 (complexity doubled)
convolutional (n = 2, k = 1,K = 7) 163 · 103

convolutional (n = 2, k = 1,K = 5) 41 · 103

Table 6.1: Complexities of the FEC codes
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Figure 6.9: Comparison of the complexities of BCH and convolutional code configurations

For a visual representation we determined the SNR necessary to achieve a BER of 10−5

and depicted it with the corresponding complexity in Figure 6.9. It is visible that for
higher complexity-codes a smaller SNR is necessary which means less power is needed to
operate the system. The comparison of Figure 6.9 with Figures 6.7 and 6.8 however shows,
that the situation changes for higher bit error rates, i.e. the lower complexity codes are
positioned higher and the graph will be concave instead convex. For extremely high SNR
it might be possible that the curve for two subchannels will be lower than the one for four
subchannels since the slope of the curves in Figure 6.7 (i.e. 2 subchannel-configuration) is
much steeper than the one in Figure 6.8.
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6.3 Combination of LSD Codes with Forward Error Correc-

tion

In the section above, a system combining LSD codes, spatial multiplexing and FEC is
discussed. However, we have not yet investigated, if such a combination is reasonable.
This will be done in this section. For this purpose a system with pure transmit diversity
- i.e. several transmit antennas and only one receive antenna - is considered. Several
simulations are performed in order to investigate the combination of LSD codes with FEC.
In all these simulations a BCH codes of block-length N = 255 and rates r = 87/255 ≈ 1/3
respectively r = 171/255 ≈ 2/3 in combination with 4-QAM symbols are used. The
number of transmit antennas varies.

Figures 6.10 and 6.11 show the bit error rate for several systems with an FEC of code-
rate r = 1/3 and r = 2/3, respectively. The number of transmit antennas NTX is 2 and 4.
For comparison, also the bit error rate curve of a system without FEC and the curve of
a system without LSD codes is shown. (In the last case, the information bits are coded,
mapped to 4-QAM symbols and then directly transmitted over the fading channel.)

One can see that in the low SNR regime the curve corresponding to the system without
FEC shows the lowest bit error rate. However, in the high SNR regime this system
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performs worse than the other systems. In addition, it can be seen that in the case where
the FEC code-rate r = 1/3, the use of FEC without LSD codes results in a performance
that is nearly as good as the performance obtained with a system using FEC in combination
with LSD codes. In this case, the combination of those codes results only in a small
improvement of the bit error rate. However, if the code-rate r = 2/3, the combination of
FEC and LSD codes achieves a significantly lower error rate than just FEC.

In order to get an intuition about the decoding complexity of pure FEC and LSD coding
in the following their decoding complexity is named. The BCH code of rate r = 1/3 is able
to correct t = 26 errors and requires 4.7 · 105 additions, whereas the code of rate r = 2/3
corrects up to t = 11 errors, which results in a complexity of 1.7 · 105 additions. The
MAP-DFE has a decoding complexity of 6.4 · 1041 additions per input vector r of length
Nc = 8. Consequently, LSD coding requires 32 · 6.4 · 104 = 2 · 106 additions. As can be
observed the decoding complexity of the MAP-DFE is significantly higher compared to the
complexity of the FEC. However, the use of FEC decreases spectral efficiency. Therefore,
it is desirable to use a weak FEC with a high data rate.

Figures 6.12 and 6.13 show the bit error rates for systems with NTX = 2 respectively

1For the MAP-DFE ϑ = 2 required iterations are assumed which, according to Section 6.1, seems to be

a good guess for the high SNR regime.
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NTX = 8 transmit antennas. In both cases, FEC with code-rates r = 1/3 and r = 2/3
is performed. For comparison, in both figures the curves corresponding to a system using
only FEC are shown. One can see that in the low SNR regime, the curve corresponding
to rate r = 2/3 shows a better performance compared to the curve corresponding to
rate r = 1/3. In the high SNR regime the opposite is true. Consequently, the curves
intersect. Consider the intersections of the curves corresponding to the combination of
LSD codes and FEC in Figures 6.12 and 6.13. It can be observed that in the case of 8
transmit antennas, this intersection is located at a lower bit error rate than in the case of 2
antennas. Therefore, we reason that for a sufficiently large number of transmit antennas,
the combination of LSD codes with a weak FEC outperforms the combination of LSD
codes with a strong FEC in the region we are interested in (e.g. where the bit error rate
is about 10−5).

Based on the observations above we conclude that in the high SNR regime the com-
bination of LSD codes with FEC outperforms the case where only LSD codes are used.
In addition, if a weak FEC with a high data rate is applied, the combination of FEC and
LSD codes yields a significantly better performance, compared to a system performing
just FEC. Furthermore, the use of LSD codes allows to use a weaker FEC without loss in
performance. Consequently, the combination of LSD codes with FEC can improve spectral
efficiency. All these statements make a good case for the combination of LSD codes with
FEC.

6.4 Symbol-Alphabet vs. Spatial Multiplexing

As described beforehand, the goal of spatial multiplexing is to increase the spectral ef-
ficiency, or, equivalently to achieve a higher throughput at the same bandwidth. The
question arises if the same effect or even better performance can be achieved by using a
higher symbol-alphabet and to use the antennas for diversity instead of multiplexing. In
fact, in [9] it was shown that for the same considered system (Nc = 8, NTX = NRX = 4,
constant data rate) but without FEC the introduction of 16-QAM for 2 subchannels (i.e.
2 antennas for diversity) instead of full spatial multiplexing with 4 subchannels (i.e 0 an-
tennas for diversity) and 4-QAM leads to better performance in the high SNR regime.
The curves actually intersect in the range of BER = 10−4 an area which is still of interest
for real systems.

The same simulation was done for the same configuration but with a BCH code with
rate r = 131/255 ≈ 1/2 and block-length 255. The results are visible in Figure 6.14.
The effect of the FEC ist that the intersection of the 2 and 4 subchannel configurations
are moved to an area (i.e. extremely low BER and high Eb

N0
) that is not of any interest
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for our purposes. Thus, unlike in the system without FEC in [9], the configuration with
4 subchannels performs always better in the range of interest. The same behaviour was
observed for convolutional codes.

Thus, when using space-time coding in a MIMO system with FEC, spatial multiplexing
should be given higher priority opposed to larger symbol-alphabet size to achieve higher
throughput.

6.5 FEC Code-Rate vs. Spatial Multiplexing

In Section 6.4 it is stated that spatial multiplexing should be preferred instead of choosing
a higher symbol-alphabet. In this section we want to investigate the tradeoff between the
code-rate r of the FEC and spatial multiplexing. All simulations are performed using a
BCH code of block-length 255. The system transmits 4-QAM symbols and the throughput
is held constant (i.e. the choice of a strong FEC with a low data rate is compensated using
more subchannels). Figures 6.15 and 6.16 show the bit error rate in function of Eb

N0
. In

both figures the used BCH codes have code rates r = 2/3, r = 1/3 and r = 1/6.

In Figure 6.15 a system is considered with 4 transmit and receive antennas and a total
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throughput of 2/3 bits per channel use. In order to achieve a constant throughput, Nu = 4
subchannels correspond to the code of rate r = 1/6, Nu = 2 subchannels correspond to
the code of rate r = 1/3 and the system using an FEC of rate r = 2/3 applies no spatial
multiplexing. It should be noted that the less subchannels are used, the higher is the
achievable diversity gain. We can see that the curve corresponding to a FEC of rate
r = 2/3 using no spatial multiplexing shows the best performance. Therefore, it can be
observed that the lower diversity gain and the intersymbol interference (ISI) caused by
spatial multiplexing has a wider influence on the bit error rate than the gain due to a
stronger FEC (i.e. FEC with a lower data rate).

The same behavior can be observed in Figure 6.16. Here, a system with 16 transmit
and receive antennas and a total throughput of 8/3 bits per channel use is considered.
Consequently, Nu = 16 subchannels correspond to the code of rate r = 1/6, Nu = 8
subchannels correspond to the code of rate r = 1/3 and the system using an FEC of rate
r = 2/3 transmits the symbols over 4 subchannels. Again, the curve corresponding to
the system using the weakest FEC (i.e. the FEC with the highest data rate) shows the
best performance. This leads us to the same observation as in the case above, where the
throughput was 2/3 bits per channel use.

From these observations follows that it is reasonable to use a weaker FEC instead
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of increasing the number of subchannels in order to achieve a larger throughput. Con-
sequently, if one has to decide between diversity in combination with a weaker FEC or
spatial multiplexing in combination with a stronger FEC, it is beneficial to choose higher
diversity.



Chapter 7

Outlook and Conclusions

Future wireless communication systems will demand high data rates for delivery of data
like multimedia content. The use of MIMO systems (multiple input multiple output) with
multiple transmit and/or receive antennas is one technology to support these high data
rates in a rich-scattering wireless channel.

The use of multiple transmit and receive antennas enables the introduction of space-
time coding to improve link reliability and spatial multiplexing to increase spectral effi-
ciency. Space-time codes introduce spatial and temporal correlations into the signal to
benefit from diversity. Gain from diversity can be achieved either in the sender (transmit
diversity), the receiver (receive diversity) or in both, sender and receiver. Spatial multi-
plexing increases the data rate at constant bandwidth by opening several data streams
over the different antennas.

Recently, a class of codes was proposed in [14] which makes it possible to combine
space time coding and spatial multiplexing. These linear scalable dispersion (LSD) codes
are designed in a way that allows to flexibly trade off between improved link reliabity
(i.e. diversity) and increased spectral efficiency (i.e. spatial multiplexing). The proposed
design for the LSD codes includes an optional forward error correction (FEC). So far, no
research has been done on the effects of this FEC block on the performance of the whole
system.

Thus, the goal of this project was to investigate the combination of LSD codes with
FEC. LSD codes and FEC involve a large number of parameters and, consequently, a wide
range of optimization. In order to study the tradeoff between some of these parameters
simulations were performed. The results showed that the combination of LSD codes with
FEC yields a significant improvement in terms of a lower bit error rate especially if a weak
FEC (i.e. an FEC with a high code-rate) is performed. Hence, the combination of LSD
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codes with FEC is reasonable in order to improve link reliability. Spectral efficiency can
be increased by spatial multiplexing or a higher symbol-alphabet. With the number of
antennas held constant, spatial multiplexing outperforms the choice of a higher symbol-
alphabet and diversity. However, the combination of diversity and a higher FEC code-
rate even outperforms spatial multiplexing in terms of link quality (at the same spectral
efficiency and with constant number of antennas).

In this work, some of the tradeoffs in the combination of LSD codes with FEC were
investigated. However, this project only covered a small part of the whole topic. For
example, only FEC with convolutional and BCH codes was studied. It would be inter-
esting to extend the research to other codes like turbo or LDPC codes and to see if their
combination with LSD codes is still reasonable. Furthermore, we do not yet understand
exactly, how to distribute the degrees of freedom in MIMO systems on diversity vs. spatial
multiplexing to reach best performance. Consequently, in order to learn more about the
combination of LSD codes with FEC it will be necessary to consider more tradeoffs in this
system. So far however, the results raise suspicion that the combination of LSD codes
with FEC is a reasonable tool in order to improve link reliability and spectral efficiency.



Appendix A

Fields

A field consists of a set of elements that has two arithmetic operations defined on its
elements, namely, addition and multiplication, that satisfy the following properties (by
[12]):

Addition:

1. The set is closed under addition, i.e., if a, b ∈ F , then a + b ∈ F .

2. Addition is associative, i.e., if a, b and c are elements of F , then a+(b+c) = (a+b)+c.

3. Addition is commutative, i.e., a + b = b + a.

4. The set contains an element called zero that satisfies the condition a + 0 = a.

5. Every element in the set has its own negative element. Hence, if b is an element, its
negative is denoted by −b. The substraction of two elements, such as a−b is defined
as a + (−b).

Multiplication:

1. The set F is closed under multiplication, i.e., if a, b ∈ F , then ab ∈ F .

2. Multiplication is associative, i.e, a(bc) = (ab)c.

3. Multiplication is commutative, i.e, ab = ba.

4. Multiplication is distributive over addition, i.e., (a + b)c = ac + ab.

5. The set F contains and element, called the identity, that satisfies the condition
a(1) = a, for any element a ∈ F .
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6. Every element of F , except zero, has an inverse. Hence, if b ∈ F (b 6= 0), then its
inverse is defined as b−1, and bb−1 = 1. The division of two elements, such as a/b, is
defined as ab−1.
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