
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Computer Vision Laboratory
Computer Vision Group
Prof. Luc Van Gool

Markerless 3D Augmented Reality

Semester Thesis

Oct. 2002 - Feb. 2003

Autor: Lukas Hohl & Till Quack

Supervisor: Vittorio Ferrari

Contents

1 Introduction 4
1.1 Problem Statement . 4
1.2 Task . 4

2 2D/3D Augmentation Approach 6
2.1 2D Augmentations . 6

2.1.1 Affine Transformation . 6
2.1.2 Photometric Changes . 7

2.2 3D Augmentations . 8
2.2.1 The simple approach to object positioning 9
2.2.2 The sophisticated approach to object positioning 9

3 Software Architecture 12
3.1 Project Structure . 12

3.1.1 The Tracking Tool . 12
3.1.2 The Texture Mapping Module 16
3.1.3 The 3D Object Augmentation Module 17

4 Software Implementation 20
4.1 OpenGL . 20
4.2 ImageMagick . 23
4.3 VNL . 24

5 Results 25

6 Conclusions 28

4 1 INTRODUCTION

1 Introduction

1.1 Problem Statement

Augmented Reality overlays information onto real world scenes. Future applica-
tions of this technology might include virtual tourist guides, factory-workers who
get help for their job via head-mounted displays etc.

In this project we want to place artificial 2D and 3D objects into real video
sequences. Questions that arise are where and how to place the object. We
propose a system which lets the user decide on the first question. Once the
object has been placed in the scene, it should be displayed accurately according
to the perspective in the original scene, which is especially challenging in the
case of 3D virtual objects. This is to be achieved by uncalibrated 3D augmented
reality, i.e. no knowledge about the camera positions nor the scene geometry is
given or reconstructed.

Further, the objects shall be positioned in the image sequence using infor-
mation from the Affine Region Tracker developed at the Computer Vision Lab-
oratory at ETH [1]. The tracker works in markerless environments, such that a
natural scene can be tracked without adding any artificial markers. The informa-
tion obtained by one tracked planar region is sufficient to place 2D textures into
the scene and also change its coloring to fit the photometric change of the envi-
ronment. To display 3D structures, two non-coplanar regions need to be tracked
(See section 2.2).

The system should be built using a standard graphics API like OpenGL to
support portability.

1.2 Task

We extend the system proposed in [1]. In that work 2D virtual textures are super-
imposed to planar parts of the scene. Our extensions cover photometric changes
in virtual textures, augmentation with virtual 3D objects and the incorporation
of OpenGL for computer graphics.

To augment a scene with 2D objects, users can choose the location for a
virtual texture in the scene. The texture deforms and moves in order to cope
with viewpoint changes. Based on affine transformations these deformations and
movements are calculated. Photometric changes in the texture according to the
conditions in the environment improve the realistic look. The performance of
the system is illustrated by Figure 1 which shows a sequence with out of plane
rotation and changing brightness.

3D augmentations require data from two separate tracked regions of the orig-
inal scene. They need to fulfill only two requirements: First they must be non-
coplanar, second they should be close to each other. While the first requirement
is crucial, the second one influences only the accuracy of the outcome. It should

1.2 Task 5

Figure 1: A poster is mapped on the tracked region in the window

be noted, that these restrictions are not very strong: because the tracked regions
can be small, it is not difficult to find regions that fulfill the requirements.

The two tracked regions provide two independent tripels of points in complete
correspondence across all frames. From their coordinates it is possible to align
the real and virtual coordinate system, or, said in another way, to bring 3D
coordinates of the virtual object and 2D image points into correspondence.

Two distinct scenarios were implemented. In the simpler one, the position of
the object is directly attached to the two tracked regions. A more sophisticated
version lets the user choose the position for the virtual object in the scene. In
section 2.2 it will be shown that in general the information given by a user lacks
accuracy which also leads to less accurate results in augmentation.

We show that the system performs well in aligning the scene with the 3D
object under arbitrary large camera movements. Figure 2 shows two images from
a scene augmented with a 3D object.

Figure 2: An artificial coke can placed into the scene, as seen from two different
viewpoints in the scene

6 2 2D/3D AUGMENTATION APPROACH

2 2D/3D Augmentation Approach

2.1 2D Augmentations

2.1.1 Affine Transformation

The change of the shape of a tracked region between any two images is defined by
a 2D Affine Transformation. In fact, 3 points of the region in an image and their
corresponding points in the other image, uniquely determine the Affine Trans-
formation. The Affine Transformation includes Rotation, Shearing, anisotropic
Scaling and Translation and it preserves parallel lines. See Figure 3.

Figure 3: Affine Transformation: Translation, Rotation, Shearing and
anisotropic Scaling

Taking any 2D point p=(x,y) in its canonical homogeneous coordinate (x,y,1),
its transformed point p′=(u,v) is calculated by multiplying the 3x3 Affine Trans-
formation Matrix A with the 3x1 vector (x,y,1) of the original point p. In general,
the 6 unknowns (a11,a12,...,a23) of the transformation matrix can be fully deter-
mined by solving a linear equation system of 6 equations (2 equations per point).

u
v
1

 =

a11 a12 a13

a21 a22 a23

0 0 1

 ×

x
y
1

2.1 2D Augmentations 7

2.1.2 Photometric Changes

In order to maximize the realistic impression of the augmented scene, the virtual
texture’s colors have to be adapted to changing conditions of its environment. Be-
cause a region becomes brighter or darker depending on the composition of the
light, the position of either the light source, the camera or the object where the
region sits on, the texture’s color values have to adjust to the observed photomet-
ric changes. Therefore the tracked region R is scanned pixelwise. For each pixel
π of the region, the red, green and blue values (R,G,B) are taken and summed
up separately. To get the average RGB values (Ravg,Gavg,Bavg), the total sums
of each color Rtot,Gtot,Btot, are divided by the total number of pixels Π of the
region.

Rtot =
∑
π∈R

R(π) Gtot =
∑
π∈R

G(π) Btot =
∑
π∈R

B(π)

Ravg =
Rtot

Π
Gavg =

Gtot

Π
Bavg =

Btot

Π

To finally get the photometric change of a region between any two images, each
average RGB value (Ravg,b,Gavg,b,Bavg,b) of the second image (index b) divided
by its corresponding average RGB value (Ravg,a,Gavg,a,Bavg,a) of the first image
(index a) defines the scale factor (FR,FG,FB) for each colorband.

FR =
Ravg,b

Ravg,a
FG =

Gavg,b

Gavg,a
FB =

Bavg,b

Bavg,a

Multiplying RGB values of each pixel of the texture with scale factors (FR,FG,FB),
adjusts the color of the texture to suit the photometric changes of the tracked
region. This approach allows the virtual texture to appear realistic in the scene.

8 2 2D/3D AUGMENTATION APPROACH

2.2 3D Augmentations

In this chapter we describe the theoretical concepts behind our system for 3D
augmented reality.

For the further steps we differentiate between a “simple” approach and a more
sophisticated one: In the first case the object is directly mapped to the location
of the tracked region, in the latter one the object’s location is determined by the
user.First we will recall the information given and then present how to use it to
solve the problem.

For the simple and the sophisticated approach, the following is given:

1. Two non-coplanar tracked regions from the Tracker (see section 3.1.1).
Four non-coplanar points p′

c, p′
1, p′

2, p′
3 are selected from these regions,

such that they define the projection of a real world coordinate system. See
Figure 4.

2. A 3D virtual object to be placed in the scene. Its bounding box is a
parallelepiped that touches the outermost points of the object. It is
obtained from the objects vertices as described in section 4. We select
four points (Pc, P1, P2, P3) in 3D that define the virtual coordinate
base of the object in 3D. See Figure 4.

Note the notation for points and that we use homogeneous coordinates such
that a 2D image point is defined by p=(x,y,1), a point in 3D by P=(X,Y,Z,1).

A

B
p2’ p3’

pc’

p1’

P2 Pc

P1

P3

Figure 4: Two non coplanar regions A,B and the bounding box for an object, a
pyramid in this case

2.2 3D Augmentations 9

In general a 3D world-point is projected to a 2D image point by a 3x4 pro-
jection matrix P.

x
y
1

 = P ×

X
Y
Z
1

where P is the 3x4 projection Matrix

P =

p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1

Note that the last line is (0 0 0 1) because we use orthogonal projection.

2.2.1 The simple approach to object positioning

To insert the 3D virtual object into the scene, we need to find a projection matrix
that maps the bounding box to the correct location in each image. (Each point
(Pc, P1, P2, P3) is projected by P.)

This gives 8 equations for 8 unknowns (p11,. . . ,p24). For example the equations
obtained from point P1 are

x1 = p11 · X1 + p12 · Y1 + p13 · Z1 + p14 (1)

y1 = p21 · X1 + p22 · Y1 + p23 · Z1 + p24

In the simple approach the object is directly mapped to the location of the
tracked regions, i.e. the points p′

c, p
′
1, p

′
2, p

′
3 are the image-points in equation (1).

Thus, for every new frame the projection matrix P can be calculated with a linear
solver and can be used in OpenGL as described in section 4. The positioning of
the object during the sequence stays accurate this way, however the user is not
given a choice where to place the object.

2.2.2 The sophisticated approach to object positioning

The sophisticated approach lets the user choose the location for the 3D virtual
object in the scene. The user-interaction provides us with:

1. Four 2D image points (pca, p1a, p2a, p3a) in the first image of the
sequence (selected by the user). They define the projection of the
coordinate base of the 3D virtual object in the first image. See Figure 5.

2. Four 2D image points (pcb, p1b, p2b, p3b) in the image plane of another,
i.e. the last, image of the sequence.They define the projection of the
coordinate base of the 3D virtual object in that image.

10 2 2D/3D AUGMENTATION APPROACH

p2

p3

p1

pc

p4’p2’

pc’

p1’

B

A

Figure 5: The tracked regions A, B and the user defined base pc, p1, p2, p3

Before calculating and applying the projection matrix for each image, the
correspondence between the coordinate base defined by the user and the tracked
regions needs to be established. Put another way, the projected image points of
the four bounding box points (Pc, P1, P2, P3) need to be calculated for each
image first.

Remember that p′
c, p

′
1, p′

2, p′
3 are four points of the tracked regions each with

coordinates (x’,y’,1). (See figure 5)
For any 3D point (Xs,Ys,Zs)

x = x′
c + Xs · (x′

1 − x′
c) + Ys · (x′

2 − x′
c) + Zs · (x′

3 − x′
c) (2)

y = y′
c + Xs · (y′

1 − y′
c) + Ys · (y′

2 − y′
c) + Zs · (y′

3 − y′
c)

is the 2D image point.
Xs, Ys, Zs are the 3D coordinates of a bounding box point expressed in the

3D space defined by the tracked regions.
This means, to determine the correct image points for every 3D point of the

virtual object in each image, Xs, Ys, Zs need to be calculated.
Thus, to each point of the bounding box (Pc, P1, P2, P3) equation 2 with

pca, p1a, p2a, p3a as “image points” is applied.
This results in 2 equations for 3 unknowns per point (Xs, Ys, Zs, s ∈ {c, 1, 2, 3}),

an underdetermined system. The base from another image (pcb, p1b, p2b, p3b)
is needed. (Obviously the user must mark the same points of the scene as in the
first frame). This gives 4 equations for 3 unknowns, written as equation system

2.2 3D Augmentations 11

e.g. for point P1 of the bounding box

(x′
1a − x′

ca) (x′
2a − x′

ca) (x′
3a − x′

ca)
(y′

1a − y′
ca) (y′

2a − y′
ca) (y′

3a − y′
ca)

(x′
1b − x′

cb) (x′
2b − x′

cb) (x′
3b − x′

cb)
(y′

1b − y′
cb) (y′

2b − y′
cb) (y′

3b − y′
cb)

X1

Y1

Z1

 =

(x1a − x′
ca)

(y1a − y′
ca)

(x1b − x′
cb)

(y1b − y′
cb)

The subscripts a and b in the coordinate values refer to the two images.
After doing the same for the three remaining points of the bounding box, we

have a set of (Xs, Ys, Zs, s ∈ {c, 1, 2, 3}) such that equation (2.) can be applied
in every image. This gives four image points that define the user-selected base
and correspond to the four points from the bounding box. Thus, the projection
matrix for each image can be calculated.

This approach gives the user high flexibility because one can chose where to
place the object freely. However, the user will generally not be able to mark the
exact same points in the two images with different viewpoints on the scene, which
results in less accurate augmented scenes. Also, if the tracked regions are very
far from the user-selected points, the accuracy of positioning degrades.

12 3 SOFTWARE ARCHITECTURE

3 Software Architecture

3.1 Project Structure

The project is built on three modules:

1. Tracking Tool

2. Texture Mapping Module

3. 3D Object Augmentation Module

All modules are independent, they have their own executables and are sepa-
rately compiled. The Texture Mapping Module and the 3D Object Augmentation
Module ask for a History File. The History File is a plain ASCII file containing
the coordinates of the tracked regions. Texture Mapper Module also asks for a
texture (to be mapped), which can be of any type (e.g. JPG, BMP). The 3D
Augmentation Module asks for a 3D model. See Figure 6.

The History File contains a list of paths where the images of a sequence are
saved. Each image path is labeled with a frame number. For every tracked region
(it is possible to track more than one region) there is another list (named moving
region) with the coordinates of the points and their corresponding frame number.
Moreover each region in each frame has a value, which can be either 0 or 1. If
it is 0, then the Tracking Tool could fully track the region otherwise it is only a
prediction of where the region could be, a so-called ghost region. See Figure 7.

3.1.1 The Tracking Tool

The tracker works on the regions proposed by Tuytelaars and Van Gool [2, 3].
This is a method for the automatic extraction and wide-baseline matching of
small, planar regions. These regions are extracted around anchor points and are
affinely invariant : given the same anchor point in two images of a scene, regions
covering the same physical surface will be extracted, in spite of the changing
viewpoint. We concentrate on a single region type: parallelogram-shaped (an-
chored on corner points). These are based on two straight edges intersecting in
the proximity of the corner. This fixes a corner of the parallelogram (call it c) and
the orientation of its sides. The opposite corner (call it q) is fixed by computing
an affinely invariant measure on the region’s texture.

Parallelogram-shaped regions are characterised (i.e. completely defined) by
any three corners. Thus, a region is completely defined by three points.

A description of the tracking algorithm is given in [1]. Parts of the algorithms
have been improved since these publications, but it is outside the scope of this
report to document them. The basic scheme of the tracker staid the same and
we briefly report it, to help introducing some concepts needed in the rest of the
document.

3.1 Project Structure 13

Texture Mapping Module 3D Object
Augmentation Module

Image sequence with
mapped texture

Image sequence with
augmented 3D object

Tracking Tool

Image Sequence

3D ModelTexture

Video data

Video data

Historyfile

Figure 6: Process Flow Diagram

14 3 SOFTWARE ARCHITECTURE

 2 0 115.312, 236.857 198.184, 241.467 118.216, 266.716 201.088, 271.326

 0 0 120, 239 200, 245 124, 266 204, 272

−−−−−−−−−−−−−−−− MovingRegion History −−−−−−−−−−−−−−−

Frame # Ghost Coordinates

−−−−−−−−−−−−−−−− MovingRegion History −−−−−−−−−−−−−−−

Frame # Ghost Coordinates

 3 0 258.017, 199.313 238.294, 236.394 147.243, 192.235 127.52, 229.316
 2 1 259.672, 199.356 240.045, 236.488 149.935, 191.756 130.308, 228.888
 1 0 262.561, 198.755 241.824, 236.425 151.791, 191.607 131.054, 229.276

Frame # Filename

 1 /home/lhohl/SEMA/sequences/office/004.jpg
 2 /home/lhohl/SEMA/sequences/office/005.jpg
 3 /home/lhohl/SEMA/sequences/office/006.jpg

 0 /home/lhohl/SEMA/sequences/office/003.jpg

 0 0 261, 202 242, 238 153, 192 134, 228

 3 0 113.364, 236.934 196.068, 241.606 116.186, 267.109 198.891, 271.78

 1 0 117.583, 236.119 200.3, 241.03 120.339, 266.309 203.056, 271.22

Figure 7: An example of a History File (with 2 tracked regions)

The general goal of the tracker is to put a region into complete correspondence
in all frames of the sequence. This can be seen as the process of finding the
three characteristic points in all frames, or, equivalently, as finding the affine
transformation between the first frame and every other frame.

We consider tracking a region R from a frame Fi−1 to its successor frame Fi

in the image sequence. First we compute a prediction R̂i = Ai−1Ri−1 of Ri using
the affine transformation Ai−1 between the two previous frames (A1 = I). An
estimate âi = Ai−1ai−1 of the region’s anchor point1, is computed, around which
a circular search space Si is defined. The radius (called follow radius) of Si is
proportional to the current translational velocity of the region.

The anchor points in Si are extracted. These provide potentially better es-
timates for the region’s location. We investigate the point closest to âi looking
for the target region Ri. The anchor point investigation algorithm differs for
geometry-based and intensity-based regions and can be found in [1]. During the
investigation algorithm, the texture of candidate regions will have to be compared
to the texture of the region to be tracked for validation. The comparison refer-
ence has been chosen to be R in the first frame (R1) of the sequence. This helps
to avoid the cumulation of tracking errors along the frames. Since the anchor
points are sparse in the image, the one closest to the predicted location is, in
most cases, the correct one. If not, the anchor points are iteratively investigated,
from the closest (to âi) to the farthest, until Ri is found (figure 9).

In some cases it is possible that no correct Ri is found around any anchor
point in Si. This can be due to several reasons, including occlusion of the region,
sudden acceleration (the anchor point of Ri is outside Si) and failure of the anchor
point extractor. When this happens the region’s location is set to the prediction

1Harris corners

3.1 Project Structure 15

Figure 8: Tracking a parallelogram-shaped region

16 3 SOFTWARE ARCHITECTURE

ai
S

R

i

i

Figure 9: Anchor points (thick dots) are extracted in the search space Si, defined
around the predicted anchor point â.

(ai = âi), and the tracking process proceeds to the next frame, with a larger S.
In this case, the region is said to be a ghost in frame Fi. If a region is a ghost for
more than 6 frames, it labeled as lost ghost and it is abandoned.

To summarize, in order to track region R in frame Fi, the tracker needs the
region in the previous frame Ri−1 (together with Ai−1 and the follow radius in
the previous frame, and all previous frame related information) and the region in
the first frame R1, for texture comparison purposes.

3.1.2 The Texture Mapping Module

The Texture Mapping Module consists of the following class structure (see Figure
10):

Point:
The Point class is the lowest-level member in the class hierarchy. A point can
be either 2D or 3D.

Region:
The Region class is built on 4 Point and an image path. It includes a function
called Scanframe(), which scans the region and calculates the average RGB values
(see section 2.1.2).

MovingRegion:
The MovingRegion class is a list of Region. It links consecutive regions of a
image series to a list.

AMR_Builder:
The functionality of the AMR_Builder class is to build a new MovingRegion based
on an already existing MovingRegion (moving region of the textfile) and a new
start Region (defined by the user). It calculates all the affine transformations
between consecutive Region of the given MovingRegion and applies them on the
new start Region.

HistoryParser:

3.1 Project Structure 17

The HistoryParser opens and parses the textfile. It parses the list of the paths
of the images and its corresponding frame numbers and keeps them in memory
for later reference. Next it determines the beginning of a new moving region (see
definition above) and and launches the MR_Parser.

MR_Parser:
The MR_Parser parses the moving region and links every image path with its
corresponding points of the tracked region. Taking the points (of type Point) of
a region and its image path, it builds instances of an object called Region (see
below) which become to a MovingRegion (see below).

TextureImage:
The TextureImage is a container for the texture image.

ImageLoader:
The ImageLoader class loads the TextureImage.

TextureMapper:
The TextureMapper class gets the MovingRegion of the textfile and the user-
defined region. It then launches the AMR_Builder and the ImageLoader and
maps the texture using OpenGl functions.

3.1.3 The 3D Object Augmentation Module

The 3D Object Augmentation Module consists the following class structure (see
Figure 11):

The following classes already mentioned earlier are also part of the 3D Object
Augmentation Module and keep their functionality as in the Texture Mapping
Module:

HistoryParser

MR_Parser

Point

Region

MovingRegion

ImageLoader

TextureImage

The new classes are:

ModelLoader:
The ModelLoader class loads 3D custom models.

18 3 SOFTWARE ARCHITECTURE

UserModel

TextureImage

ImageLoader

MR_Parser

HistoryParser

AMR_Builder

Point

Region

MovingRegion

Figure 10: A simplyfied Class Diagram of the Texture Mapper Module

3.1 Project Structure 19

Point

TextureImage

ImageLoader

HistoryParser

MR_Parser

ThreeDeeMapper ModelLoaderTransformation

Region

MovingRegion

UserModel

Figure 11: A simplyfied Class Diagram of the 3D Object Augmentation Module

ThreeDeeMapper:
The ThreeDeeMapper class is handling the calculation of the transformation be-
tween the 4 points given from 2 non-coplanar tracked regions and the user-defined
base for each image.

Transformation:
The Transformation class calculates the projection matrix mapping 2D points
to 3D points.

UserModel:
The UserModel class is the equivalent to the TextureMapper class of the Texture
Mapper Module. It gets two MovingRegion and augments the scene with the 3D
object.

20 4 SOFTWARE IMPLEMENTATION

4 Software Implementation

The Software is implemented ANSI C++ and uses some standard libraries and
APIs. The application was designed for portability and standards compliance.
The following widely deployed libraries were used:

1. OpenGL: To display Graphics.

2. ImageMagick: To load Movies, textures and images in various file-formats.

3. VNL: To solve systems of linear equations. VNL is part of a larger software
library (VXL) for Computer Vision.

As described before, the data from the Region Tracker is exported to history
files as shown in Figure 7. The parser for the History Files was written in plain
C++ without any external libraries to guarantee portability. Each History File
can contain several moving regions but only one list of images. Thus the list of
images is parsed first as a reference, then each moving region list is parsed and
converted to a double-linked list of elements of the class Region.

Each instance of the class Region contains the location of the tracked region
in the current frame, a ghost flag, the path to the file of the current movie frame
etc. All this information is used to place the objects in the scene with OpenGL.

4.1 OpenGL

Since its introduction in 1992, OpenGL [4] has become the most widely used
and supported 2D and 3D graphics application programming interface (API).
OpenGL is available for all common computing platforms, thus ensuring wide
application deployment. Also, several extensions to OpenGL are available. We
use the GLUT extension, the OpenGL Utility Toolkit, a window system indepen-
dent toolkit for writing OpenGL programs. It implements a simple windowing
API for OpenGL. Like OpenGL itself GLUT provides a portable API. This means
that a single OpenGL program can be written that works on both Win32 PCs
and X11 workstations.

A further advantage is the licensing model which allows free use for research
purposes. OpenGL for C++ is not object oriented, which makes it difficult to use
it properly in C++ programs. OpenGL is designed with the concept to behave
like a state machine. State transitions are defined with functions. For example
the code for drawing a square is the following:

glBegin(GL_QUADS);

glVertex3f(0,0,0);

glVertex3f(1,0,0);

glVertex3f(1,1,0);

glVertex3f(0,1,0);

glEnd();

4.1 OpenGL 21

glBegin() with the parameter QL_QUADS sets OpenGL and square drawing
mode, the following vertices are connected to a square. The glEnd() call exits the
square-drawing mode. In addition, functions for display and user-interaction (like
mouse- or keyboard-handler) have to be defined as C-style Callback functions.
For instance

glutDisplayFunc(myDisplayFunc)

needs to be called to register myDisplayFunc() as the display function.
This non object-oriented style caused some difficulties during integration into

our object-oriented environment. All the functions that are related to OpenGL
are now defined within the classes TextureMapper or UserModel for 2D or 3D
respectively. All the class members and member-functions had to be defined as
static - otherwise the use of the callback-functions as imposed by the OpenGL
architecture would not work. This implies that only one instance of the classes
UserModel or TextureMapper at a time can be active (Singleton Classes), which
is not to strong a limitation in our case, as there is no need for more.

A further challenge that resulted from the architecture of OpenGL and the
GLUT was the use of the so called glutMainLoop(). It needs to be called to start
processing the OpenGL functions. Once started, the glutMainLoop() can’t be
quit. This imposes rather strong restrictions concerning the data exchange with
other classes. All runtime calculations have to be done from functions that run
within the glutMainLoop, which are basically the display function and the mouse-
and keyboard- handlers in our case. Within OpenGL several matrices define how
the current scene is presented on the screen. The Modelview Matrix positions
the object in the world, the Projection Matrix determines the field of view (or
viewing volume in OpenGL terms). Finally the viewport defines how the scene
is mapped to the screen (position, zoom, etc.).

In spite of the availability of functions that directly rotate, translate etc. one
can also set and display the desired scene by accessing the matrices directly.

This is done using the glLoadMatrix() function. A typical series of com-
mands would be the following

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

glLoadMatrix(new_projection_matrix)

with new_projection_matrix being a sixteen-element array containing the new
matrix values. The matrices become important right at the beginning of the user-
interaction process. The points that defined the base (pc,p1, p2, p3) need to
be transformed from pixel- (window-) coordinates to the corresponding OpenGL
object-coordinates. (OpenGL Coordinates are measured in fractions of 1 in x
and y direction starting at the center of the window. For the z values a special
depth range is defined).

22 4 SOFTWARE IMPLEMENTATION

The utility-function gluUnProject() returns the correct OpenGL coordinates
regarding to the current matrices and a particular depth in z direction.

For the rest of the process the matrices are used the other way around, obvi-
ously: The matrices are set based on the calculations as described in section 2.2.
The concept of matrix-usage in OpenGL as described above is a little different
than the theoretical one. However, we managed to transform our calculations in
a way that they fit the OpenGL matrices.
The setting of the matrices is called from the display function. Here, OpenGL of-
fers double-buffered animation. While one framebuffer is displayed, the contents
of the other one are calculated in the background. So the process in the display
function basically consists of getting the information for the current tracked re-
gion, obtaining the new projection matrix, loading it to OpenGL, advancing on
step in the list of moving regions and then swapping the framebuffer.

A further OpenGL feature we used is texture mapping. The following steps
are performed to map textures to an object:

• Specify and load the texture.

• Enable texture mapping.

• Draw the scene, supplying both texture and geometric coordinates.

A texture contains image data. (In OpenGL textures are restricted to have width
and height values that are powers of two). The texture is loaded with an instance
of our ImageLoader class.
A texture is initialized using the following series of commands

// create texture

glGenTextures(1, (GLuint*) &texture_id);

glBindTexture(GL_TEXTURE_2D, texture_id); // 2d texture (x and y size)

// scale linearly when image larger or smaller than texture

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);

glTexImage2D(GL_TEXTURE_2D, 0, 3, timage->sizeX, timage->sizeY, 0, GL_RGB,

GL_UNSIGNED_BYTE, timage->data);

The last command assigns a texture that is scaled linearly when the image
is smaller than the texture, level of detail 0 (normal), 3 components (red, green,
blue).

To draw a textured square also the texture coordinates have to be given

glBegin (GL_QUADS);

glTexCoord2f (0.0f,0.0f);

glVertex3f (0, 0, 0);

glTexCoord2f (1.0f, 0.0f);

4.2 ImageMagick 23

glVertex3f (1, 0, 0);

glTexCoord2f (1.0f, 1.0f);

glVertex3f (0, 1, 0);

glTexCoord2f (0.0f, 1.0f);

glVertex3f (1, 1, 0);

glEnd ();

A remark should also be made on how to import custom 3D Models into
our application. While it is easy to rebuild simple objects consisting only of few
planes (like cubes) every time the framebuffer is swapped, it is not useful to do
this for complicated objects with several thousand vertices. OpenGL offers the so
called display lists which allows to precompile these objects and then call them
by a unique list id. OpenGL does not have a particular file format for 3d objects
like 3DS for Autodesk’s 3d Studio for instance, the only available format are the
display lists mentioned before.

Most models that can be found in the Word Wide Web for esample, are
usually offered in 3DS or some other format, but not in OpenGL code. Thus
one needs a converter. DeepExploration from Right Hemisphere turned out to be
very useful. Several File Formats can be exported directly to OpenGL display
lists. After exporting, the code must be edited to make it object oriented and
the model can then be loaded by calling this class. We augmented our scene with
models consisting of over 25000 vertices. We have added some sample models to
the application that can be chosen by mouse-click.

It should also be mentioned that we obtain the bounding box as it is described
in section 2.2 on page 8 by determining the minimal and maximal x y and z values
of all vertices, while the display list is built.

While calculation and the display of 3D objects is rather fast, the loading of
the background images (i.e. the images from the original scene) slows perfor-
mance. There are basically two ways possible to add a background to a OpenGL
environment. Either the background image is written directly to the framebuffer
with the function glPixelWrite() or the image is mapped as a texture to a
rectangle behind the scene. While it is said that the latter one is faster, it has a
limitation, too: Textures can only have width and height that are powers of two.
One could add some black space to each image so that it gets the right size, and
after displaying it clip the scene so that it fits the screen. We decided for the first
way for reasons of simplicity.

4.2 ImageMagick

We need images from several file formats in our program. The movie frames are
to be loaded, the texture images, too.

OpenGL does not offer any built-in functionality to load image files. Instead
of writing loaders for each file type manually we wrote a class that accesses

24 4 SOFTWARE IMPLEMENTATION

Magick++, the C++ interface to ImageMagick [5]. ImageMagick allows loading,
writing and converting of nearly any kind of image file-format (over 80 file formats
are supported). Note, that the interface to ImageMagick not only allows to load
image data for textures and frames, we also implemented a function that exports
the augmented sequence to any file format supported by ImageMagick.

ImageMagick is also widely deployed and also available for many computing
platforms. This, again, ensures portability.

4.3 VNL

While the process of setting the matrices in OpenGL was described beforehand,
nothing has been said about how to solve the sstems of linear equations of 2.2.

The calculation of the projection matrices and the solution of the equations
in section 2.2 both need solving of linear equation systems. For this purpose the
VNL library from VXL [6] was used. VXL (the Vision-something-Libraries) is a
collection of C++ libraries designed for computer vision research; vnl is a library
with numerical containers and algorithms, in particular vnl provides matrix and
vector classes with operations for manipulating them.

25

5 Results

We present 3 image sequences in total that demonstrate the qualities of our
system.

Two examples illustrate the results for 2D Augmented Reality, i.e. tex-
turemapping and photometric changes.

Figure 12 illustrates a virtual number mapped to a tram. The sequences show
the trackers strength to follow the tram even around a curve which means out of
plane rotation for the tracked region. As a result of an affine transformation the
number can be mapped to any other place and is transformed accordingly.

Figure 12: A virtual number mapped on the tram

Figure 13 shows the effects of photometric changes. The light moves over the
poster, the patch mapped to the poster changes it‘s brightness accordingly while
also changing shape and position correctly.

A further example illustrates our results for 3D Augmented Reality in Figure
14. The object is always positioned correctly, while the camera moves backwards
and rotates around the object at the same time.

The experiments confirmed that non-calibrated Augmented Reality in 2D and
3D can be achieved relying on the concepts presented in section 2 and on OpenGL
for implementation. The experiments thus showed that the system can accurately
augment natural scenes with 2D and 3D virtual objects at user-selected positions
under general motion conditions and without any artificial markers.

26 5 RESULTS

Figure 13: The effects of photometric changes

27

Figure 14: A scene augmented with the 3D Model of a Buddha statue

28 6 CONCLUSIONS

6 Conclusions

With this thesis we successfully continued the work of Ferrari et al. [1]. Based on
the data exported from the Tracking Tool we were able to port the system for 2D
augmentation to a widely used standard graphics API. We enhanced the visual
appeal by introducing features like the photometric change in the superimposed
textures according to their environment. We brought the system literally to a
new dimension by introducing 3D virtual objects as augmentations. The system
showed good results and the code is portable to various platforms due to the
standard API’s and libraries used.

REFERENCES 29

References

[1] V. Ferrari, T. Tuytelaars, and L. Van Gool. Markerless augmented real-
time affine region tracker. Proceedings of the IEEE and ACM International
Symposium on Augmented Reality:87 – 96, 2001.

[2] T. Tuytelaars and L. Van Gool. Contend-based image retrieval based on
local, affinely invariant regions. Third Int. Conf. on Visual Information
Systems:493–500, 1999.

[3] T. Tuytelaars and L. Van Gool. Wide baseline stereo based on local, affinely
invariant regions. British Machine Vision Conference:412–422, 2000.

[4] http://www.opengl.org

[5] http://www.imagemagick.org

[6] http://vxl.sourceforge.net

