
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Computer Vision Laboratory
Prof. Luc Van Gool

Master’s Thesis

Cortina: A System for

Large-scale, Content-based

Web Image Retrieval

and the Semantics within

Till Quack

April 2004

Advisor ETH: Prof. Luc Van Gool,

Swiss Federal Institute of Technology,

Zürich, Switzerland.

Advisor UCSB: Prof. B.S. Manjunath,

University of California at Santa Barbara,

Santa Barbara, USA.

Hunc ubi vix multa maestum cognovit in umbra, sic prior adloquitur: ”quis
te, Palinure, deorum eripuit nobis medioque sub aequore mersit? dic age.
namque mihi, fallax haud ante repertus, hoc uno responso animum delusit
Apollo,qui fore te ponto incolumem finisque canebat venturum Ausonios. en
haec promissa fides est?” ille autem: ”neque te Phoebi cortina fefellit, dux
Anchisiade, nec me deus aequore mersit. Namque gubernaclum multa vi
forte revulsum, cui datus haerebam custos cursusque regebam, praecipitans
traxi mecum.1

Virgilio, Aeneidos, Liber VI, vi. 340-351

1A translation can be found in Appendix B

III

IV

Acknowledgments

This thesis came into existence during a stay at the the University of Cal-
ifornia at Santa Barbara, USA. Many people helped to make it a great
experience, and I would like to thank in particular:

Prof. Luc Van Gool from ETH Zürich,who supported me in going abroad
for my Master’s Thesis and made this stay possible in the first place,

Prof. B.S. Manjunath from UCSB for his generous support and the dis-
cussions during the conception of this project as well as his kind hospitality,

Ullrich Moenich and Lars Thiele who contributed as exchange students from
Germany to our joint project.

I also want to express my gratitude to all the other members of the Vi-
sion Research Laboratory at UCSB, who made my stay so enjoyable, and in
particular Sitaram Bhagavathy, Baris Sumengen and Jelena Tešić for many
interesting and helpful discussions.

Financial support for the exchange from ETH Zürich is also gratefully ac-
knowledged.

Santa Barbara, 25 April 2004

Till Quack

V

VI

Abstract

Recent advances in processing and networking capabilities of computers have
led to an accumulation of immense amounts of multimedia data such as
images. One of the largest repositories for such data is the World Wide
Web. There is an urgent need for systems which allow to search these vast
on-line collections.

We present Cortina, a large-scale image retrieval system for the World
Wide Web. It handles over 3 Million images to date. The system retrieves
images based on visual features and collateral text. Methods are introduced
to investigate these multi-modal characteristics of the data and to gain in-
sights into the semantics within the data. We show that a search process
which consists of an initial query-by-keyword and followed by relevance feed-
back on the visual appearance of the results is possible for large-scale data
sets. We also show that it is superior to the pure text retrieval commonly
used in large-scale systems. The precision is shown to be increased by ex-
ploiting the semantic relationships within the data and by including multiple
feature spaces into the search process.

VIII

Master’s Thesis CONTENTS

Contents

List of Figures XI

List of Tables XIII

1 Introduction 1

1.1 Retrieving Images from the World Wide Web 2

1.2 Previous Work . 3

1.3 Task . 4

1.4 Organization . 4

2 System Overview 5

2.1 Features . 8

2.1.1 Visual Features . 8

2.1.2 Text and Keywords 10

2.2 Searching the Feature Spaces 12

2.2.1 Visual Feature Space 12

2.2.2 Visual Feature Combination 16

2.2.3 Text Feature Space . 18

2.3 Relevance Feedback on Visual Features 21

3 Semantics: Combining Visual Features and Text 23

3.1 The Semantic Gap . 23

3.2 Related Work . 25

3.3 Data Mining for Semantic Clues 27

3.3.1 Introduction to Frequent Itemset Mining and Associ-
ation Rules . 27

3.3.2 Exploring Frequent Itemsets for Semantic Association
Rules . 30

IX

CONTENTS Master’s Thesis

3.3.3 Exploiting the Semantic Rules 38
3.3.4 Summary of Semantic Improvements for Visual NN

Search . 46
3.4 Improving Text-Based-Search with Visual Features 47

3.4.1 The Visual Link . 47
3.4.2 Approximations for Faster Graph Construction 50

4 Software Design 56
4.1 Collecting the Data . 57
4.2 Extracting Features . 57
4.3 Software Layers . 58
4.4 Relational Database . 58
4.5 Middleware . 60
4.6 Presentation Layer . 61

5 Discussion and Further Results 63

5.1 Measuring the Quality of Search Engines 63
5.2 Overall Precision of the Image Retrieval System 64
5.3 Frequent Itemset Mining and Semantic Rules 69
5.4 The Keyword Search . 73

6 Conclusions 74

7 Outlook 76

A Cortina in Numbers 79

B About the Name Cortina 80

C User Questioning Form 81

D CD ROM 83

Bibliography 84

X

Master’s Thesis LIST OF FIGURES

List of Figures

1.1 Web-Image retrieval . 3

2.1 System overview . 6
2.2 From images on web-pages to keywords 10
2.3 Sizes of the EHD, HTD and SCD clusters 14
2.4 A query (symbolized by the dot) is close to the border of the

voronoi cell . 15
2.5 Pdf of the distances for each descriptor type along with the

best matching distributions 17

3.1 Distribution of images matching several keyword queries over
the EHD clusters . 24

3.2 Large clusters were re-clustered into smaller ones. 33
3.3 Several rules deduced from MFI in our database and their

support and confidence . 36
3.4 Confidence for different minimal support thresholds. 37
3.5 How frequent itemset mining can be applied to gain insights

into semantics from different perspectives 38
3.6 The 10 visually closest images for the image on the top-left

as the visual query after an initial keyword search for ”shoe”.
(Columnwise, i.e. left column contains k-NN 1-5, right col-
umn 6-10.) . 40

3.7 Images belonging to one semantic concept spread over two
clusters . 40

3.8 A shirt from EHD cluster 249 (left) and one from EHD cluster
310 (right) . 41

3.9 A typical graph with visual links. 48
3.10 A closer look at a connected component 49

XI

LIST OF FIGURES Master’s Thesis

3.11 Candidates C within a layer of thickness r around the query
Q, and centered at the cluster centroid are considered similar,
i.e. linked. 52

3.12 Relative distances of feature vectors to their cluster centroids 52
3.13 First 16 results for query ”shoe” before connected component

analysis . 54
3.14 First 16 results for query ”shoe” after connected component

analysis . 54
3.15 First 16 results for query ”apple” before connected component

analysis . 55
3.16 First 16 results for query ”apple” after connected component

analysis . 55

4.1 Hardware setup . 56
4.2 Simplified Entity Relationship Diagram (ERD) for our mySQL

Database . 59
4.3 Software Layers . 61
4.4 Cortina WWW interface . 62
4.5 Cortina WWW interface detail 62

5.1 Precision curve for visually very close images. 66
5.2 Precision curve for conceptually close images. 66
5.3 Query images selected for relevance feedback. Initial keyword

query was “sunglass” . 68
5.4 Results after one step relevance feedback “normal” 70
5.5 Results after one step relevance feedback “semantic” 70
5.6 Runtime of frequent itemset mining algorithms. 72
5.7 Number of frequent itemsets and long frequent itemsets. . . . 72
5.8 Confidence for different minimal support thresholds. 72
5.9 Semantic vs. Normal keyword search 73

C.1 Sample Questionnaire . 82

XII

Master’s Thesis LIST OF TABLES

List of Tables

2.1 An Inverted Index . 20

3.1 Example: Transactions from a store 28
3.2 Example: Images as transactions 31
3.3 Frequent itemset mining results. MFI per keyword, for 41

781 266 transactions in total. 34
3.4 Support “distribution” for the frequent itemsets from table 3.3 37
3.5 Top 15 maximal frequent itemsets for the keyword ”shoe”.

(In total, 15639 images are labeled with the word ”shoe”) . . 42
3.6 Relational DB table to approximate distance calculations . . 51

XIII

Introduction Chapter 1

Chapter 1

Introduction

In recent years advances in processing and networking capabilities of com-
puters have led to an accumulation of immense amounts of data. Many of
these data are available as multimedia documents, i.e. documents consist-
ing of different types of data such as text and images. By far the largest
repository for such documents is the Word Wide Web (WWW). Currently,
Google [1] offers access to over 4.2 billion documents, which gives a rough
estimate of the size of this online data collection.

Clearly, the amount of information available on the WWW creates enor-
mous possibilities and challenges at the same time. While everything can
be found it is hard to find the right thing - while this is true for pure text
retrieval (i.e. web-pages), it is even harder for multimedia content.

Much progress has been made in both text based search on the WWW
and content-based image retrieval for research applications. However, little
work has been done to combine these fields to come up with large-scale,
content-based image retrieval for the WWW.

Commercial search engines like Google [1] have successfully implemented
methods [2] to improve text-based retrieval. While text-based search on the
WWW has reached astounding levels of scale and some degree of sophisti-
cation, commercially available search for images or other multimedia docu-
ments also relies on the use of text only. In addition, no commercial search
engine offers the possibility to refine the search using relevance feedback on
visual appearance, i.e. the option to look for results visually similar to an
image selected from a first set of results.

The content based image retrieval (CBIR) systems introduced by the
image processing or computer vision community on the other hand, exist

1

Chapter 1 Introduction

in a research form and do not have commercial potential. In general, the
database of the proposed systems is relatively small, and the proposed sys-
tem does not scale well with increase in the database’s size. Few scale to
some extent [3], but only if they are restricted and tuned to a certain class
of images — e.g. aerial pictures or medical images. In addition, many of
these CBIR systems rely only on low level features and do not incorporate
other data to improve the semantic quality of the search.

The goal of this project is to take content-based web-image retrieval to
larger scales and thus one step closer to commercial applications. Further
contributions focus on the exploration and exploitation of the multi-modal
characteristics of web-data to increase the semantic quality of search results,
as will be explained in detail in the following sections.

1.1 Retrieving Images from the World Wide Web

Many of the challenges for image retrieval on the WWW stem from its
characteristics as an information source:

• Size: The sheer amount of documents poses challenges in computa-
tional requirements which have immediate consequences on the choice
of methods to handle these data.

• Diversity: The documents can appear in many contexts and in many
languages. The quality (in a semantic sense) of the information source
is hard to determine. Images can be of any dimension, many file-
formats and wide range of qualities.

• Control: There is no control on what people publish and in what form.
Especially, there is no control on what text appears in the context of
an image on a website.

• Dynamics: The data collection is always changing. There are new
web-sites every day, web-sites become outdated or go off-line.

Usually, the information is multi-modal : Different types of information ap-
pear together. In our case: images usually appear embedded within text. In
this sense image retrieval is similar to other multi-modal information repos-
itories like newspaper archives, stock photography or any kind of database
that has meta-data assigned to images. However, all of these collections

2

1.2 Previous Work Chapter 1

Figure 1.1: Web-Image retrieval

are usually smaller, limited in context and rather well-controlled. Image re-
trieval of the web is an interdisciplinary problem which touches several areas
such as image processing and retrieval, text retrieval, networking and even
supercomputing as shown in figure 1.1. The challenge is to combine these
areas such that the overall performance of the system is increased. The the-
sis at hand will focus on the information retrieval side of the problem with
simultaneous consideration of all the other factors.

1.2 Previous Work

In recent years, much work has been done and published on CBIR. The
QBIC project [4] at IBM was one of the earlier systems that allowed content-
based retrieval by color or texture and also was applied commercially. Nu-
merous CBIR systems followed: BlobWorld [5] and NeTra [6] included image
segmentation, and PicHunter [7] and MARS [8] offered relevance feedback.

Most of these systems rely on pure visual features and few focused specif-
ically on content based image retrieval from the web: WebSeer [9] included
some image features which allowed the user to restrict a search to sketches,
photographs or faces. Newsam et al introduced a category based system [10]
for about 600 000 images with relevance feedback. They limit the search

3

Chapter 1 Introduction

space for nearest neighbor search to the DMOZ [11] categories which means
their system relies on a predefined categorization of the data.

Work on systems and methods that integrate text and visual features
will be discussed in detail at the beginning of chapter 3.

1.3 Task

Content-based image retrieval on the web is taken one step closer to real
world applications. We propose and implement a system which makes large-
scale, content-based image retrieval on the web possible. We collect a dataset
consisting of several Millions of items. We scale image-retrieval methods to
these large amounts of data. The system uses several MPEG-7 visual fea-
tures and text. It also offers the possibility to refine the search based on
relevance feedback. I chose the focus of my research and the thesis at hand
to be on the multi-modal characteristics of the data set. Search in different
feature spaces is discussed and implemented. The semantic relationships
within the data are explored and scalable methods are identified and imple-
mented to derive improvements in the precision of our system. The system
is made available on the World Wide Web. The quality of the search is
quantified as far as it is possible for large-scale search engines.

1.4 Organization

The document is organized as follows. Chapter 2 contains an overview of the
system modules, discusses the features, their extraction and search in the
feature spaces. Chapter 3 presents methods to discover and exploit semantic
relationships in web-data - it contains the largest part of my theoretical
contributions to the system. In chapter 4 we discuss the details of the
system architecture, i.e. the software and hardware part of this project.
Chapters 5 and 6 contain experimental results and conclusions, respectively.

4

System Overview Chapter 2

Chapter 2

System Overview

This section gives a short overview of the image-retrieval system. It intro-
duces the basic modules and processes of the system for a more in depth
discussion of the semantics within, which will be presented in chapter 3.
The focus of this chapter is to present the design and and the elements of
the system in an abstract manner. Details on the specific software design of
the system will be discussed in chapter 4.

The system as shown in figure 2.1 can be conceptually separated in two
large blocks: One for the retrieval, i.e. the interaction with the user, and
another one for the off-line collection and preprocessing of the data.

We will first describe how the user experiences a typical search process,
i.e. the retrieval part of the system. The search process typically starts with
a keyword query through a web-interface. The request is sent to an inverted
keyword index. As a response, the system delivers matching images, ranked
by textual and visual features. The user now can choose the images that
are visually closest the semantic concept he was looking for. Based on this
information, the system returns a refined answer, i.e. a new, more precise
set of images. This interaction is generally known as (short-term) relevance
feedback and can be repeated several times, until one is satisfied with the
results.

To enable such a search process the data from the WWW has to be
collected, encoded and stored in a way that describes the information in a
compact way. All this happens in the off-line part of the system. First, the
information is gathered from the WWW. A custom web-crawler, the image
spider, collects images and associated text automatically. The DMOZ Open
Directory [11] served as a starting point for the image spider. From each

5

Chapter 2 System Overview

K
e

y
w

o
rd

s

V
is

u
a

l

F
e

a
tu

re
s

Im
a

g
e

S
p

id
e

r
W

o
rl
d

W
id

e
W

e
b

D
M

O
Z

D
a

ta

K
e

y
w

o
rd

E
x
tr

a
c
ti
o

n

F
e

a
tu

re

E
x
tr

a
c
ti
o

n

Im
a

g
e

D
e

s
c
ri
p

ti
o

n
Im

a
g

e
s

(B
in

a
ri
e

s
)

K
e

y
w

o
rd

In
d

e
x
in

g

C
lu

s
te

ri
n

g

K
e

y
w

o
rd

R
e

q
u

e
s
t

N
e

a
re

s
t

N
e

ig
h

b
o

r
S

e
a

rc
h

M
a

tc
h

in
g

Im
a

g
e

s

U
s
e

r
p

ic
k
s

re
le

v
a

n
t

im
a

g
e

s

M
a

tc
h

in
g

Im
a

g
e

s

In
v
e

rt
e

d
In

d
e

x

k
e

y
id

|
im

a
g

e
id

R
e

tr
ie

v
a

l
O

ff
lin

e
C

lu
s
te

r
n

C
lu

s
te

r
2

C
lu

s
te

r
1

C
lu

s
te

r
n

C
lu

s
te

r
2

C
lu

s
te

r
1

C
lu

s
te

r
n

C
lu

s
te

r
2

C
lu

s
te

r
1

C
lu

s
te

r
n

C
lu

s
te

r
2

C
lu

s
te

r
1

m
y
S

Q
L

Figure 2.1: System overview

6

Chapter 2

element of data (i.e. an image with associated text) textual and visual
features are extracted and stored. Text is encoded into keywords and linked
to corresponding images by an inverted index. Visual features are extracted
and stored in several clusters.

The following sections of this chapter deal with the basic kinds of data
and retrievals in our system: In section 2.1 the different types of features are
introduced. In section 2.2 we discuss how to search these individual feature
spaces. Section 2.3 contains a description of the relevance feedback process.

7

Chapter 2 System Overview

2.1 Features

The search process returns images that match a query by comparing several
types of features of the query image and the retrieval candidates. Before
the retrieval is described (Chapter 2.2) we give an overview over the features
that have been used in our system.

2.1.1 Visual Features

For the visual features we chose four feature types from the MPEG-7 stan-
dard [12] which were applied in a global manner to the whole image. In
particular no segmentation or tiling of the images was done. The reasoning
behind this is that the collection of images from the WWW is extremely di-
verse and of very different qualities. It is thus questionable if a segmentation
would give consistent results. Also, considering the large amount of images
we intend to collect, processing time is crucial. By omitting segmentation
or tiling and applying the feature extraction to the image as a whole the
process of extracting the features can be sped up significantly.

The four descriptors chosen from the MPEG-7 standard included two
texture descriptors and two color descriptors, respectively: The homoge-
neous texture descriptor (HTD), the edge histogram descriptor (EHD), the
scalable color descriptor (SCD) and the dominant color descriptor (DCD).

The HTD is a vector consisting of the outputs of a Gabor filter bank.
The 2-D frequency plane is partitioned into 30 channels which are modeled
by Gabor filters with different scales and orientations. The feature vector
layout is

HTD = [fDC , fSD, e1, e2 . . . , e30, d1, d2, . . . , d30]

where ei and di are the nonlinearly scaled and quantized mean energy and
energy deviation of the ith channel, respectively. fDC and fSD are the
mean and standard deviation of the whole image. This means, the HTD is
a 62-dimensional feature vector. For retrieval only the distance between two
feature vectors distance(HTDQuery,HTDDatabase) needs to be calculated 1.

The EHD contains information about the spatial distribution of edges
in an image. The image is divided into 4× 4 sub-images. For each of these
sub-images the local-edge histogram is stored. For the edge histogram edges
are categorized into five types: vertical, horizontal 45 degrees diagonal, 135

1Details on the choice of a specific distance function are given in the next section.

8

2.1 Features Chapter 2

degrees diagonal, and non-directional. This results in a 5× 16 = 80 dimen-
sional vector. To obtain the histogram for each sub-image it is subdivided
into smaller image blocks within which edge detectors are applied. The
vector layout is

EHD = [h90
0,0, h

0
0,0, h

45
0,0, h

135
0,0 , hnondir

0,0 , . . . , h90
3,3, h

0
3,3, h

45
3,3, h

135
3,3 , hnondir

3,3]

where hα
i,j is the histogram count for tile (i, j) and direction-bin α. The

two texture descriptors were chosen because they complement each other:
The EHD performs best on large non-homogeneous regions, while the HTD
operates on homogeneous texture regions. A detailed description of the
texture descriptors can be found in [12].

The SCD is a color histogram in the HSV color space, which is encoded
by a Haar transform. The basic unit of the Haar transform consists of a
sum and a difference of two adjacent histogram bins — primitive low- and
high-pass filters. This unit is applied across the 256-bin color histogram of
the image. Optional repetition results in lower resolution descriptors of 128,
64, 32 and 16 bits. Thus the name scalable color descriptor. For retrieval
the L1-Norm in the Haar space is used. A detailed description of the SCD
can be found in [12].

The DCD provides a compact description of the most dominant colors
in an image. Unlike histogram-based color descriptors, the dominant colors
are calculated for each image instead of being fixed in the space defined by
the histogram bins. The Layout of the DCD is

DCD = {(ci, pi)}, i = 1, 2, . . . , N

where N is the number of dominant colors. ci stands for a 3-D color vec-
tor (e.g. LUV or RGB space), pi is the percentage of pixels in the image
corresponding to color i. The maximum value for N is 8. To extract the
dominant colors, the colors in the image are clustered, usually in a percep-
tually uniform color space such as the LUV space. The retrieval process is
different from the other descriptor types since the individual values of the
DCD vector do not stand for dimensions in a feature space. Consider two
DCDs,

DCD1 = {(c1i, p1i)}, i = 1, 2, . . . , N1

DCD2 = {(c2i, p2i)}, i = 1, 2, . . . , N2

9

Chapter 2 System Overview

Figure 2.2: From images on web-pages to keywords

Then the dissimilarity can be computed as

D(DCD1,DCD2) =
N1∑
i=1

p2
1i +

N2∑
j=1

p2
2i −

N1∑
i=1

N2∑
j=1

2a1i,2jp1ip2j (2.1)

where ak,l is the similarity coefficient between two colors ck and cl

ak,l =

{
1− dk,l/dmax dk,l ≤ Td

0 dk,l > Td

with dk,l = ||ck − cl|| the Euclidean distance between two colors ck and cl.
Td is the maximum distance for two colors still considered to be similar and
dmax = αTd, where α is a parameter. This dissimilarity measure is intro-
duced and shown to be equivalent to the common quadratic (Mahalanobis)
distance measure between two color histograms in [13].

2.1.2 Text and Keywords

In addition to the image features we collect textual information related to
each image from the WWW. The process that leads from web-images to
keywords is shown in figure 2.2.

Each web-page our web-crawler visits is analyzed. We look for the HTML
tag which embeds an image into the HTML code. The
image is saved and later on the visual features are extracted as described
above. The text in the alt tag is saved. The information around the
tag is analyzed, too. HTML tags are removed and we are left with collateral
text. So called stopwords, i.e. words like I, the, that are removed from the
text. The remaining terms are normalized in that their commoner morpho-
logical and inflexional endings are removed and only the remaining stem
is stored. For this purpose an implementation of the Porter stemmer [14]

10

2.1 Features Chapter 2

was used. Doing so, more documents match a keyword. If, for instance,
one document was assigned the keyword training and another one the word
trained they now have the common, stemmed keyword train. As the at-
tentive reader may have realized, the stemmer introduces also ambiguities
since train is not only the stem for the verb to train but also the noun train,
i.e. a mean of transportation. These ambiguities could be removed to some
extend with a syntactical analysis of the text, however, this is out of the
scope of this work.

Note that collecting the collateral text around the image often gives
extremely noisy results. The text is often less precise than for instance in
newspaper or magazine articles. Many of our images are collected from
shopping pages, text around these images often contains useless words such
as item, price, size, color which stem from interfaces where the user can
define these options. Or in many cases an image like that in figure 2.2
would not have the most characteristic keyword shoe but some words such
as red or adidas only. In addition to these WWW-related problems there are
issues that affect every document collection like the paraphrase problem, i.e.
that the same object or concept can be described with completely different
words. This can only be overcome in controlled environments by using a
restricted vocabulary with precise rules for manual annotation as often used
in stock photography databases like [15, 16].

We will get back to some of these issues in chapter 3 where we deal with
the semantics in our collection.

11

Chapter 2 System Overview

2.2 Searching the Feature Spaces

In the last section our visual and textual features were introduced. In this
section we discuss how a search in these feature spaces can be done and
which implementations we chose for our system.

2.2.1 Visual Feature Space

A search in the visual feature space usually boils down to a search in a
n-dimensional vector space. In our system the HTD, EHD and SCD can
be treated this way, since they are all described by a vector in their fea-
ture space. The DCD however needs special treatment since its layout is
different as the reader may remember from the previous sections. For the
search in the n dimensional vector space the similarity between query x and
retrieval candidate y is measured by a distance d. We used variations of the
Minkowski metric for the distance measures in our system:

d = Lk(x, y) = ||x, y||Lk
= k

√√√√ n∑
i=1

|xi − yi|k (2.2)

In particular, for the EHD and the SCD the L1 norm was used, and for
the HTD the L2 norm. For the HTD the MPEG-7 standard [12] suggests
a distance based on the Mahalanobis distance, however it has been show
that the L2 norm performs equally. Usually one is not interested in all the
distances, especially when the dataset is very large, but only in the k closest
images. Finding the k closest neighbors is known as k-nearest neighbor
search or k−NN search for short. Thus, especially for retrieval systems as
ours, approximations are necessary, which retrieve the k−NN in reasonable
time. This means that the data needs to be preprocessed, in simple words:
the data needs to be “pre-sorted” in some manner which enables fast access
to the k−NN of any query vector. This is a challenging problem, which gets
even more complicated for high dimensional (usually n > 20 is considered
high dimensional) feature spaces.

Clustering the Visual Feature Space

One of the methods to pre-sort our data is to divide the feature space into
partitions, so called clusters. All of the vectors for each of these clusters
are stored in one separate file. Instead of searching the whole dataset for

12

2.2 Searching the Feature Spaces Chapter 2

the k − NN , first the query is compared to a representative, the centroid
for each cluster. The cluster corresponding to the closest centroid is chosen
and the k − NN search is limited to this cluster. This way the amount of
disk accesses is limited and datasets that don’t fit into main memory can be
searched reasonably fast.

Since HTD, EHD and SCD are high-dimensional feature vectors, some
remarks have to be made about clustering in these environments. Our con-
ception of space is based on our experience with three dimensional spaces.
However, high dimensional spaces behave differently which is often referred
to as the curse of dimensionality. An extensive discussion of this matter can
be found in [17]. A short summary of the problems that affect our system
can be given as follows:

• In high dimensional spaces of dimension n, volumes are spread along
the surface of objects. It can be shown that, because of this effect, the
probability that an arbitrary item lies in a spherical query approaches
0 as n→∞.

• The concept of nearest neighbors loses its meaning in high-dimensional
spaces, since it has been shown that minimum and maximum distance
for a query point are almost the same — for any distance metric or
data distribution.

• The data in high dimensional spaces is usually very sparse.

These problems actually make meaningful clustering based on distances very
unlikely in high-dimensional spaces. However, the current literature gives
no measures when a distance based clustering will work and when it will fail.
For us, the hope is that at least clustering will provide some partitioning
of the data which enables faster k − NN search and some dimensionality
reduction for applications built on top of it. In fact, for once having a
large dataset is theoretically an advantage — the more data is available the
better the sparsity of the data can be overcome. However, the computational
demands make it usually infeasible to use the whole dataset, which means
that only a sample can be taken to create the clusters.

The choices for and implementation of clustering of the visual features
were done in a separate work [18]. Thus, we will give only a short summary
to make the reader familiar with the basic concepts. The K-Means algo-
rithm was chosen as a clustering procedure - mainly because it is known to

13

Chapter 2 System Overview

100 200 300 400
0

2

4

6

8
x 10

4

EHD cluster identifier

N
um

be
r

of
 im

ag
es

100 200 300 400
0

5

10

x 10
4

SCD cluster identifier

N
um

be
r

of
 im

ag
es

100 200 300 400
0

2

4

6

8
x 10

4

HTD cluster identifier

N
um

be
r

of
 im

ag
es

Figure 2.3: Sizes of the EHD, HTD and SCD clusters

be fast which is crucial considering the size of our data set. It is an iterative
clustering technique that results in K data clusters. K centroids are initial-
ized by choosing points that are mutually farthest apart. In each iteration,
the algorithm recomputes the set of better partitions of the input vectors,
and their centroids. In our project 10% of the database were taken as a
sample to calculate the cluster centroids. The whole dataset was assigned
to the closest centroids to form the clusters. 400 such clusters were created
per feature type. The distribution of the images over the clusters is shown
in figure 2.3. Note, that unfortunately the distribution is very uneven.

In figure 2.4 an imminent problem of such a clustering is shown: What
if a query is close to the border of a cluster? By considering only the
cluster in which the query lies, we loose a lot of the nearest neighbors. The
solution suggested in [18] is to extend each cluster to a hypersphere Si around
the centroid ci. This way, overlapping clusters are created and more close
neighbors are captured. The radius for the hypersphere around a cluster
centroid was chosen to be 2 times the distance to the outermost member
of the original cluster. Since the original distribution was very uneven, the
largest cluster contained 4× 105 images - roughly 13% of our dataset. This
means that the scalability of this method is not very good. We will come
back to this problem in chapter 3 where we suggest an alternative solution
based on semantic information.

14

2.2 Searching the Feature Spaces Chapter 2

Figure 2.4: A query (symbolized by the dot) is close to the border of the
voronoi cell

k-NN-search and Clustering for the DCD

Since the concept of the DCD differs from the one for HTD, EHD and SCD,
i.e. it is not a vector in a high dimensional feature space, the search process
is not the same either. k-NN search in the context of the DCD means
searching the database for images with a similar distribution like the query
image. The database is first searched for each of the dominant colors of
the query separately. Then the results are combined. In [13] the search
procedure is given as follows:

1. For each query color, find the matching images that contain similar
colors. To quickly eliminate some false matches, a threshold Tp is set
for the difference between the query percentage qi and the retrieved
percentage pi. A candidate image is eliminated if the following condi-
tion is not true

|qi − pi| < Tp

2. Join the results from step 1, i.e. find the images that contain all the
query colors and passed step 1. In addition∑

i

pi > Tt

must be true. Tt was set to 0.6.

15

Chapter 2 System Overview

3. Calculate the distances between all the remaining retrievals and the
query with the distance measure given in equation 2.1.

To find the similar colors [13] defines a special lattice indexing structure. We
decided just to cluster the colors with the K-Means algorithm that we had
already in place. The good news here is that each color i is represented by a
3-dimensional vector ci, i.e. searching for individual colors does not happen
in a high-dimensional feature space. Thus clustering the individual colors
presents no problem. Note that each image appears in several clusters, one
for each dominant color. Also, we decided to skip step 3, i.e. we just select
the images which have similar color and percentage distributions like the
query.

2.2.2 Visual Feature Combination

Since we have several visual feature types, we need to combine the results
of the retrievals for each feature-type, if we want to do a joint search. We
decided to combine the distances of the four descriptors in a linear way.

d = ε ∗ dEHD + η ∗ dHTD + ς ∗ dSCD + δ ∗ dDCD, ε + η + ς + δ = 1 (2.3)

The following questions need to be considered:

• The distances have different ranges for each descriptor type. How do
we normalize them?

• Which ratios should be used to combine the distances, i.e. what values
to set for ε,η,ς and δ?

To normalize the distances their distribution has to be examined. The distri-
bution of the distances of the four descriptor types is shown in figure 2.5. We
tried to match each distribution with a known distribution. The parameters
were determined with a Maximum-Likelihood parameter estimation.

Based on these distances we decided to transform each of the distribu-
tions to a Gaussian distribution in the range [0, 1] to be able to compare
and combine the distances.

The ratios ε, η, ς and δ should be set query-dependent, i.e. for many
queries, there is a descriptor type which is better suited to describe a se-
mantic concept. E.g. images of objects on a uniform background are well-
described with the EHD, for a query related to the ocean one of the color

16

2.2 Searching the Feature Spaces Chapter 2

0 1 2 3 4 5 6

x 10
7

0

0.5

1

1.5
x 10

−7

distance d

pd
f d

Homogeneous Texture Descriptor

empirical distribution
logn distribution

0 2000 4000 6000 8000 10000
0

2

4

6
x 10

−4

distance d
pd

f d

Edge Histogram Descriptor

empirical distribution
logn distribution

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9
x 10

−3

distance d

pd
f d

Scalable Color Descriptor

empirical distribution
normal distribution

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

distance d

pd
f d

Dominant Color Descriptor

empirical distribution
logn distribution

Figure 2.5: Pdf of the distances for each descriptor type along with the best
matching distributions

17

Chapter 2 System Overview

types might be a better feature. These are general assumptions, in the spe-
cific case it depends on the user’s intent. Usually a user enters the system
with query-by-keyword and then refines the search with relevance feedback.
In chapter 3 we suggest an approach to set the initial values based on in-
formation collected from the dataset keyword. For the moment, consider an
initialization with each weight set to 0.25. The weights are then changed
in the relevance feedback process by the information obtained from images
selected by the user as relevant. This is described in section 2.3.

The descriptor type with the highest weight is chosen as the primary
descriptor. k−NN search is done in the clusters of this feature type. Now,
consider that the EHD is our primary descriptor, we search for images that
are close to the query. Since the EHD is the primary descriptor we search the
EHD cluster of the closest centroid to the query. If we just did the same for
each secondary-feature cluster, and then took the intersection of the results,
there might be very few images (if not none) that are in the k−NN for all
the descriptor types. As an approximation we search only the images that
are in the cluster of the primary descriptor type. This means, however, that
all the other descriptors, the secondary descriptors, need to be stored along
with the primary descriptor clusters — for each descriptor type. Otherwise
the gain achieved by clustering is lost.

2.2.3 Text Feature Space

To implement a search in the textual feature space one can choose from many
options. They include the standard vector space model [19], boolean queries
on an inverted index or more sophisticated methods like LSI [20]. In spite of
these additional options, to our knowledge large-scale web-retrieval systems
usually rely on boolean queries on an inverted index - starting with the
earliest [21] up to the currently most successful [1]. We decided to follow
the same path at least for the initial keyword search, since not only the
boolean queries on an inverted index are a well-established instrument but
also because the focus of this work shall be on image retrieval rather than
text retrieval. We implemented a ranked boolean OR query : Query words
separated by whitespace are implicitly converted to an OR query. The rank
is set based on the common tf ∗ idf measure:

wi,j = tfi,j ∗ log(
N

ni
) (2.4)

18

2.2 Searching the Feature Spaces Chapter 2

where tfi,j is the number of times term i appears in document j, ni is the
number of documents containing the term i and N is the total number of
documents. tf is the term-frequency, and idf = log(N

ni
) is the inverse doc-

ument frequency. The rationale behind this is that with tf a document is
ranked higher if the term i appears often in the document, idf is a mea-
sure for the term importance, i.e. how often term i appears in the overall
collection of size N .

An inverted index is built with the keywords extracted as explained in
the last section. For each keyword and each document, there is an entry
in the inverted index which maps the keyword to the document along with
the frequency it appeared. Our inverted index is implemented as a table in
a relational database. The essential columns of our inverted keyword index
are shown in 2.1. Note that the keywords are represented by their id KeyID.
This is crucial for performance, since indexing and accessing a column with
numeric values is much faster than using a column with alphanumeric values,
i.e. the keywords themselves. The relation between the keyword ids and the
keywords is established in another table. Also, we have two columns for
the keyword frequency: altfreq if the keyword appeared in the alt tag of
the image, keyfreq for the text around the image. This way they can be
weighted differently, i.e. the keywords in the alt tag can be given a higher
weight since they are ”closer” to the image. From the layout of the inverted
index it becomes clear why boolean queries on such an index is so widely
used in large-scale applications: The representation as an inverted index
is very compact for high-dimensional yet sparse data: As each document
can be treated as a point in the term space, i.e. each possible keyword is a
dimension in this space, vectors to represent the documents are of dimensions
between 104 and 105 in uncontrolled collections. However, our documents,
i.e. the words assigned to an image, are in the order of 101 to 102.

A common data-structure for such indices are B-Trees. We chose a rela-
tional database to implement our inverted index. Relational databases usu-
ally offer standard functionality to create B-Tree indices on table columns.
Moreover, boolean queries on the inverted index can be formulated in the
Structured Query Language (SQL):

SELECT ImageId, Sum(keyfreq) as Total_Score,Count(keyfreq)

as Matches FROM imagekeys WHERE keyid IN(<keyids>)

GROUP BY ImageId ORDER BY Matches DESC, Total_Score DESC

19

Chapter 2 System Overview

KeyID ImageID altfreq keyfreq

12993 1456 0 2
134564 1456 1 0
12283 1456 0 1
35691 1457 1 0
22983 1457 0 3
43563 1457 0 1
.

Table 2.1: An Inverted Index

This is a simplified version of the query which takes only the column keyfreq

into account. The query returns image ids, jointly ranked by the number
of keyword matches (Matches) and the total number of appearances of the
query-keywords with the image (Total_Score). If we want to include the
tf ∗idf measure from equation (2.4) and both keyfreq and altfreq a query
would look like

SELECT ImageId, Sum(0.3*keyfreq+0.7*altfreq)*importance

as Total_Score,Count(keyfreq) as Matches FROM imagekeys,

keywords WHERE imagekeys.keyid IN(<keyids>) and

imagekeys.keyid=keywords.keyid GROUP BY ImageId

ORDER BY Matches DESC, Total_Score DESC};

The Total_Score is replaced with a weighted sum of keyfreq and altfreq

which corresponds to tf and multiplied by the column importance from the
keyword table which contains the idf value.

Note that the inverted index can get quite large: for our 3 ∗ 106 images
we have an inverted index table with about 60 ∗ 106 rows and we collected
about 6 ∗ 105 different keywords!

The number of keywords is large indeed. One possibility to reduce it is
to take only words that are listed in a common thesaurus. One of the most-
used thesuari in the electronic text processing community is WordNet [22]
from Princeton University. In the latest release it contains about 150 000
words along with their semantic relationships. We made some experiments,
but decided to rely on our large keyword collection for the moment. One
drawback is that many product or company names are not contained in
WordNet.

20

2.3 Relevance Feedback on Visual Features Chapter 2

2.3 Relevance Feedback on Visual Features

Relevance feedback is information about query results, given by a user to a
retrieval system. In the context of image retrieval the user usually chooses
the images that are relevant (positive feedback) and sometimes also the
wrong matches (negative feedback). Our system Cortina includes positive
relevance feedback on the visual descriptors. The user can mark images that
are relevant for a given query and the visual feature vector information is
used to adapt and refine the query. How text information could contribute
to the relevance feedback is discussed in chapter 3. Another kind of relevance
feedback is long-term relevance feedback, i.e. information for each query is
stored and revoked when another user enters the same query. This is also
discussed in chapter 3.

The specific choices of methods for and implementation of relevance feed-
back for Cortina were done in an affiliated work [23]. Here, we will discuss
the general concepts and methods to be able to discuss the enhancements
which will be introduced in chapter 3.

When a user selects relevant images we automatically obtain more in-
formation about his intents. Most importantly, if the user selects multiple
images we can determine the best descriptor type for the query and set
the weights in equation (2.3) accordingly. The basic concept is simple: If
a descriptor type describes the query very well, all the vectors of the rele-
vant images lie close together. To formulate this quantitatively: For each
feature type f the average distance df

avg between all the relevant images is
calculated:

df
avg =

∑M
i=1

∑M
k=1 df

ik

M2
, f ∈ {EHD,HTD,SCD,DCD}

where i, k index the relevant images and df
ik is the distance between image

i and k with the distance measure defined for feature type f . The df
avg are

added and normalized to the range [0, 1], such that the weights can be set,
e.g. for the EHD

ε =
1− dEHD

avg

(1− dEHD
avg) + (1− dHTD

avg) + (1− dSCD
avg) + (1− dDCD

avg)

Not only are the weights adapted, but also a new query vector is constructed
based on the relevant images. A linear combination of the vector elements

21

Chapter 2 System Overview

from all the relevant images was chosen:

rf
k =

∑M
i=1 rik

M
(2.5)

Where f ∈ {EHD,HTD,SCD,DCD} is the feature type, rf
k is the com-

ponent k of the feature-vector of type f , and i indexes the relevant images.
The above is true for the first round of relevance feedback, i.e. after a

query-by-keyword. In round n of relevance feedback the new query vector
rn is also combined with the query vector of round n − 1 and the weights
are adapted accordingly. The details of this process are not relevant for this
work. The interested reader is referred to [23].

While constructing a new query vector for the EHD, HTD and SCD can
be done as described above, the DCD needs special treatment again. The
MPEG-7 standard does not include a particular procedure for relevance
feedback on the DCD, so we proposed an approach ourselves.

All the the dominant colors from all the query images are sorted by their
percentage and put into a source list S = {(cs, ps)}. Starting with the color
at the first entry (i.e. the one with the highest percentage) each color is
selected and put into a list of selected colors L = {(cs, ps, Ns)}, where cs is
a 3D color vector, ps is a percentage and Ns is a counter. For this newly
added color, all the images selected for relevance feedback are visited, i.e.
their descriptors DCDq are examined

DCDq = {(cqi, pqi)}, i = 1, 2, . . . , Nq

(2.6)

If a color cqi of DCDq is similar to cs (i.e. their Euclidean distance is smaller
than Td as it was used for equation 2.1), its percentage pqi is added to ps

and the counter N is increased. The the next color is removed from S and
appended to L — until S is empty. Then each percentage ps in L is divided
by its counter Ns, i.e. normalized. The k entries in L with the highest
normalized percentages ps form the new query vector.

This being a simple, greedy algorithm, the result is dependent on the
order of the values in S. Ordering by percentage is reasonable, but does
not deliver the best possible results. It would be better to look at the
distribution of all the colors in S and define “bins”. It turned out that such
an approach has been proposed very recently in [24].

22

Semantics: Combining Visual Features and Text Chapter 3

Chapter 3

Semantics: Combining

Visual Features and Text

This chapter describes how the joint use of textual and visual features can
be exploited to improve the results of a web-image retrieval system. It is the
theoretical core of the present work and it introduces some new approaches
to semantics in large-scale, web-based image retrieval.

3.1 The Semantic Gap

The basic challenge in the design of image retrieval systems is known as
the semantic gap: Visual features alone are usually not suited to describe
a semantic concept. Often, not even single words can describe a semantic
concept. As an example consider the concept(s) apple. On a high level, there
exist at least two semantic concepts for apple: The fruit and the computer
manufacturer. Both of them can be split into many sub-concepts. For the
moment consider the apple being a fruit. If we were asked to describe an
apple visually, we might think of some slightly distorted round shape —
but even the color can differ from green to yellow to red. The low level
image-features can store some of this information, e.g. the color or the
texture as in our system. However, the apple might appear in front of
different backgrounds, might hang on a tree or even be part of an apple-pie.
These problems are usually referred to as polysemy (i.e. a word or concept
with multiple meanings) or synonomy (i.e. the same concept described
by different words or features). Since we use global visual features in our

23

Chapter 3 Semantics: Combining Visual Features and Text

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1
Keyword Shoe

EHD Cluster ID}

%
 o

f i
m

ag
es

 la
be

le
d

S
ho

e

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
Keyword Clinton

EHD Cluster ID

%
 o

f i
m

ag
es

 la
be

le
d

C
lin

to
n

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03
Keyword Apple

EHD Cluster ID

%
 o

f i
m

ag
es

 la
be

le
d

A
pp

le

0 100 200 300 400 500
0

2

4

6

8
x 10

−3 Keyword Porsche

EHD cluster ID d

%
 o

f i
m

ag
es

 la
be

le
d

P
or

sc
he

Figure 3.1: Distribution of images matching several keyword queries over
the EHD clusters

system, i.e. no segmentation is done, this problem gets even harder to
solve. However, remember that by collecting images from the WWW we
were able to assign both text and several visual features to them in an
unsupervised manner, as presented in the preceding chapters. The idea is
to exploit these co-occurrences between text and different visual features to
improve the search on a semantic level, i.e. to ”bridge” the semantic gap by
combining all the information we have. To illustrate that there really exists a
connection between the keywords and the low level image features, consider
the histograms in figure 3.1. It shows the distribution of the images labeled
with different keywords over the image feature clusters - in this particular
case for the EHD. It can be seen that images with particular keywords appear
more frequently in some clusters than in others. Indeed, from figure 3.1 it
seems that EHD cluster fourteen describes the images matching the keyword
”shoe” very well. Other keywords show more and lower peaks for the edge
histogram descriptor. Similar relations can be found for the keywords and
the other visual feature descriptors.

24

3.2 Related Work Chapter 3

3.2 Related Work

Numerous publications have introduced techniques to find relationships be-
tween keywords and images. This section gives an overview of some of these
techniques and examines the applicability to our problem. Basically there
are four approaches to the problem: Mapping to some joint, low dimensional
spaces, model-based approaches, classification and data mining. Several
works have applied a method known as Latent Semantic Analysis (LSA) or
Latent Semantic Indexing (LSI) which has been introduced in [20] originally
for text retrieval. LSI maps documents and queries to a lower dimensional
concept space in which the retrieval takes place. The power of this technique
is that it is able to identify semantic concepts rather than rely on individual
keywords only. To look into LSI as a possible solution to our problem of large
scale web image retrieval a short summary of the theory behind LSI is given
as follows: The low dimensional concept space mentioned beforehand is cre-
ated from a terms× documents matrix A by Singular Value Decomposition
(SVD). An entry aij represents the number of occurrences of term i in doc-
ument j. SVD decomposes A into three matrices of dimensions terms×m,
m×m and m×Documents, respectively. m defines the size of the concept
space and ranges typically from 50-350. Several works have applied LSI to
image retrieval or combined text and image retrieval. In [25] visual features
are given as additional “terms” to the terms× documents matrix and thus
combines the visual features and textual features in the same concept space.
In this particular work the technique was applied to some 3000 newspaper
photographs with associated text. The method is described to perform well,
however the set of images is very small. As interesting s the theory of LSI is,
it has some drawbacks: the complexity of the SVD algorithm can be shown
to be O(N2m3), where N is the number of terms plus documents. In our
system we have numbers of documents in the order of millions, for the terms
only the number of keywords is in dimensions of 105. While of much smaller
dimension but yet not without contribution, the dimensionality of visual
features comes on top of that. This means that the SVD is nearly infeasible
in a reasonable amount of time for our problem, if applied to the whole
dataset. Also, the LSI process has to be redone if the document collection
changes significantly, which in the dynamic environment of the WWW can
happen very often. As LSI and related methods map the information to
a lower dimensional semantic concept space, other approaches try to find

25

Chapter 3 Semantics: Combining Visual Features and Text

probability models that jointly describe text and visual features. Barnard
and Forsyth have published numerous works on retrieval based on matching
words and images, including [26, 27, 28, 29]. Most of their work is based on a
model introduced by Hoffman [30]. Their model is a generative hierarchical
model in form of a tree structure, i.e. each image with text is thought to
be generated by following the branches in the tree model. The search pro-
cess is based on the probability of each candidate image emitting the query
items. This approach is described to work well with some several thousand
images from the Corel data set [26] and some several thousand images from
a museum database [27]. Very recently [29] the method and some variants
were compared to each other also based on some ten thousand images from
the Corel Data set and a text vocabulary of 155 words. The results appear
to be quite good, but clearly, the amount of data tested is still very small.
In addition, the authors mention that the system might be sensitive to very
noisy words. According to [26] the computational requirements are ”a few
thousand images in a few hours” to train the model which would mean for
some millions of images (as in our case) a few thousand hours if we suppose
linear complexity in the best case. Other statistical models were introduced
by Wang et al. in [31]. Here, hidden Markov models were use to train some
hundred semantic concepts also based on the Corel data set and used to
auto-annotate other images from the same Corel classes with words.

A different approach — the one we found the most practicable after in-
vestigating all the afore-mentioned approaches — is data mining: The goal
is to find patterns in the data where they exist. i.e. it is possible that for a
large amount of abstract concepts it will be hard to find patterns, however, if
some concepts are well-described by some connection between features and
keywords we believe that they can be identified by data mining. Tradition-
ally data-mining literature is mostly concerned with business-data, census
data or similar. Recent publications mine multimedia data for visual rela-
tionships in multimedia datasets, for instance in [32] the spatial relationships
between texture classes in aerial images are explored. In [33] characteris-
tics of multimedia documents like size, file-type and strongly compressed
(pivoted) color and texture information were represented in data cubes —
keywords where simply appended to these data cubes.

26

3.3 Data Mining for Semantic Clues Chapter 3

3.3 Data Mining for Semantic Clues

Our approach is the following: We mine our data to find interesting patterns
and try to find semantic rules from these patterns to improve the search pro-
cess. Semantic rules can be based on associations between text and visual
features or between different types of visual features for a given concept.
This choice is motivated mainly by the fact that our dataset is large, di-
verse, dynamic and noisy. Model-based approaches would fail because no
model can be found to represent the whole dataset. Mapping to a lower-
dimensional semantic space suffers from the same problem and in particular
the original dimensionality and size of the dataset. The techniques we apply
are frequent itemset mining and association rules. These are well-studied
methods, known to scale very well. After an introduction to frequent item-
set mining and association rules we will investigate how they can be applied
to find semantic rules from our data.

3.3.1 Introduction to Frequent Itemset Mining and Associ-

ation Rules

The concept of association rules was first introduced in [34] as a means
of discovering interesting patterns in large, transactional databases. Let
I = {i1 . . . ik} be a set of k elements called items. A is a k-itemset if it
is a subset of I with k elements, i.e. A ⊆ I, |A| = k. A transaction is a
pair T = (tid,A) where tid is a transaction identifier and A is an itemset.
A transaction Database D is a set of transactions with unique identifiers
D = {T1 . . . Tn}. A transaction T supports an itemset A if A ⊆ T . The
cover cover(A) of an itemset A is the set of transactions supporting A.

Definition 3.1 The support of an itemset A ∈ D is

support(A) =
|{T ∈ D|A ⊆ T}|

|D| (3.1)

An itemset A is called frequent in A if support(A) ≥ minsupp where
minsupp is a threshold for the minimal support defined by the user. An
association rule is an expression A → B where A and B are itemesets (of
any length) and A ∩ B = ∅. Usually 1 the quality of a rule is described in
the support-confidence framework.

1Several extensions have been made to association rules. Most noteworthy maybe [35]

where the proper mathematical commonalities and differences between association rules

27

Chapter 3 Semantics: Combining Visual Features and Text

TID Items

1 Bread, Milk
2 Beer, Diaper, Bread, Eggs
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Bread, Diaper, Milk

Table 3.1: Example: Transactions from a store

Definition 3.2 The support of a rule

support(A→ B) = support(A ∪B) =
|{T ∈ D|(A ∪B) ⊆ T}|

|D| (3.2)

measures the statistical significance of a rule.

Definition 3.3 The confidence of a rule

confidence(A→ B) =
support(A ∪B)

support(A)
=
|{T ∈ D|(A ∪B) ⊆ T}|
|{T ∈ D|A ⊆ T}| (3.3)

Confidence is a measure for the strength of the implication A→ B.

Note that the confidence can be seen as a maximum likelihood estimate of
the conditional probability that B is true given that A is true.

Example 3.1 The classic application for association rules is market basket
data analysis. In this context, an itemset refers to a set of products. A
transaction is the set of products bought by a particular customer. Consider
the transactions in table 3.1. Suppose we want to find support and confi-
dence of the famous rule {Diaper,Milk} → Beer:

support =
support{Diaper,Milk,Beer}

|D| =
2
5

= 0.4

confidence =
support{Diaper,Milk,Beer}

support{Diaper,Milk} = 0.66

The problem of finding association rules boils down to finding frequent item-
sets as a first step. ”Good” rules are identified in a second step, for instance

and correlation are outlined. A chi-squared test is suggested as an alternative to the

support-confidence framework

28

3.3 Data Mining for Semantic Clues Chapter 3

all rules that have higher confidence than than the predefined threshold
minconf .

Frequent itemsets are subject to the monotonicity property: all k-subsets
of frequent k+1-sets are and must be also frequent. The well known APriori
algorithm introduced in [36] takes advantage of this property. As discussed

Algorithm 1 APriori
1: i← 1, L← ∅
2: Ci ← {{A} | A item of size 1, A ∈ D}
3: while Ci �= ∅ do
4: Li ← ∅
5: database pass:
6: for A ∈ Ci do

7: if A is frequent then
8: Li ← Li ∪A

9: end if
10: end for

11: candidate formation:
12: Ci+1 ← sets of size i + 1 whose all subsets are frequent
13: Ci ← Ci+1

14: L← L ∪ Li

15: end while
16: return L

in [37] the complexity of the APriori algorithm is O(
∑

i |Ci|np) where np

is the size of the data consisting of n transactions and p items. i indexes
the size of the itemsets. Note that the algorithm needs k passes through
the data. Many improved algorithms for frequent itemset mining have been
developed since, an overview of state-of-the-art algorithms with performance
measures can be found in [38]. Most of the algorithms reduce the passes
over the data to only 2 and further speed up the computations by using data
structures, that make it easier to find frequent itemset candidates. We chose
an implementation described in [39], which uses an array-based extension of
FP-trees to achieve outstanding performance. The details of the algorithm
can be found in the publication, a thorough discussion is out of scope of this
work. The code was obtained from the authors. With all the improvements
achieved by better algorithms the search space is still huge and a frequent

29

Chapter 3 Semantics: Combining Visual Features and Text

itemset of size k implies the existence of 2k − 2 non-empty subsets of the
itemset. Instead of mining all frequent itemsets it has been suggested to
mine only maximal frequent itemsets (MFI’s) and closed frequent itemsets
CFI’s. An itemset is maximal frequent if it has no superset that is frequent.
The problem with MFI’s is while we know the support s of the MFI itself,
we know that the support of all its subsets is at least s, but we don’t know
the exact value. Therefore a CFI is defined to be a frequent itemset without
a frequent superset with the same support. We mined for MFI’s in most
cases.

3.3.2 Exploring Frequent Itemsets for Semantic Association

Rules

Identifying semantics in our data set means finding correlation between text
and different types of low-level image features such as color and texture. In
this context each multimedia-document2 is a transaction which consists of
several keywords and some information on the visual features. While the use
of keywords as items in a transaction is straight-forward the visual features
need some treatment before they can be added to the transaction. The main
problem is that the visual feature vectors are very high dimensional such
that the number of possible item-values would be huge if each feature vector
would be taken as an item, and the chance of an item occurring often i.e.
being frequent would be very small. Thus we need some kind of quantization.
The clustering of the low level features as described in section 2.2.1 achieves
exactly this; it reduces the dimensionality and quantizes values in some range
to a cluster identifier which can be added to the transaction easily. Some
examples of such transactions are given in table 3.2. Note that we stored
two cluster id’s per visual feature type and transaction for EHD,HTD and
SCD: The actual cluster the image is assigned to and the next closest. This
is done to increase the frequency of the visual feature items and to increase
the number of co-occurences of text and visual features. Each image appears
in several clusters for the DCD because of its concept or layout, as explained
in chapter 2.2. As mentioned in the introduction and quantified in the last
section, our choice of frequent itemset mining and association rules as a tool

2Here we usually speak about images and collateral text. But we believe, that the

techniques presented can be applied to video and speech or other multi-modal multimedia

datasets in the same manner.

30

3.3 Data Mining for Semantic Clues Chapter 3

ImageID Keywords EHD SCD HTD DCD

129977 shoe,
leather,
high, heel

223,14 413,555 2,399 12,44,321,4,7

129978 shoe,
brown,
formal

223,37 455,25 16,246 67,97,33

129979 shirt,
linux, pen-
guin, nerd,
shop

21,56 23,67 46,2 87,231,222,34

129980 suit,
formal,
tuxedo,
brioni

88,271 123,321 265,333 345,23,233,123,56

.

Table 3.2: Example: Images as transactions

to identify semantics is motivated by the comparably low computational
complexity, i.e. the scalability to large datasets as ours. But the method
has additional, beneficial characteristics:

• Association rules can be analyzed by humans in most cases. Unlike
neural networks or the semantic concept space of LSI, which are very
hard to interpret.

• Rules can be added or deleted: Rules for additional data can be added,
human users can remove incorrect rules etc.

• Instead of editing rules manually, the information obtained by hu-
mans can be integrated from long-term relevance feedback: Stored
usage data (i.e. which images were selected for certain queries) can be
analyzed to add additional rules or to weight existing rules.

• It is possible to implement a system which does not need to re-analyze
the whole dataset when new data are added.

Like every method association rules have some disadvantages which should
be mentioned, too:

31

Chapter 3 Semantics: Combining Visual Features and Text

• It is important to note that association and correlation is not the
same. In particular, association rules with the support/confidence
framework can find only positive correlations. A thorough discussion
of this subject can be found in [35].

• If we want to discover interesting rules with low support the dataset
has to be analyzed with a low minimum support threshold which takes
long and leads to the generation of many uninteresting rules 3.

While mining the transactional data as in table 3.2 we met several chal-
lenges. The first is given by the distribution of the data over the low-level
feature clusters. Figure 2.3 depicts this distribution for the EHD, HTD and
SCD descriptor types respectively. The distribution is very uneven and has
a range from a few images per cluster to over 105 images per cluster. (We
believe this is the result of two factors: First, the stopping criterion for the
K-Means algorithm was not zero and maybe too high. But the lower the
stopping criterion the longer the clustering process. Second, samples of the
data and not the whole dataset was used to determine the centroids for
the clusters). Clearly, this distorts the information obtained from frequent
itemset mining: If a cluster is very large, the a-priori probability that an
image for any semantic concept is located in this cluster is high, which leads
to strong but uninteresting rules. On the other hand, if a cluster is very
small it gives us close to zero information. To overcome this problem, large
clusters were re-clustered by individually giving them as an input to the
k-means algorithm. This way each cluster larger than 2 ∗ 104 was split into
smaller clusters of about 8000 images per cluster. This is obviously a crude
approximation, but as it can be seen from figure 3.2 it helped to lower the
variance of the cluster sizes, in particular the new clusters with ids larger
than 400 are nearly evenly distributed.

Another problem was the strength of associations within text versus text
and low level feature clusters: It turned out that in our data the associa-
tions between keywords are much stronger than the associations between
keywords and the low level feature clusters. That means, to discover pat-
terns consisting of text and visual information the frequent itemset mining

3However, in [40] methods are described to efficiently find multiple level association

rules, i.e. rules on higher and lower semantic levels. The drawback is that the methods

supposes some predefined hierarchy-structure between high-level and low-level concepts.

In our database such a hierarchy is not available.

32

3.3 Data Mining for Semantic Clues Chapter 3

0 200 400
0

0.5

1

1.5

2
x 10

4

EHD Cluster ID

N
um

be
r

of
 Im

ag
es

0 200 400
0

0.5

1

1.5

2
x 10

4

SCD Cluster ID

N
um

be
r

of
 Im

ag
es

0 200 400
0

0.5

1

1.5

2
x 10

4

HTD Cluster ID

N
um

be
r

of
 Im

ag
es

Figure 3.2: Large clusters were re-clustered into smaller ones.

has to be done with extremely low minimal support threshold, which affects
runtime and scalability.

Thus, we redefined the problem: For the moment we are interested in
rules that contain keywords and visual feature clusters. In particular, we
want to have rules that consist of one keyword and some visual feature clus-
ter ids. Thus, we can do the frequent itemset mining per keyword, i.e we
load all the images which match a given keyword and assign the association
rules found from this data to the keyword. We have the information on
which images are matched for each keyword in the inverted keyword-index
discussed in section 2.2. The transactions can be obtained from this table
and a table that lists the cluster identifiers for each image very easily. In ad-
dition, using this approach we find also rules for keywords that appear rarely
— if we did the mining just over the whole dataset, the information how
often a keyword appears in the whole dataset would influence the frequent
itemsets, i.e. they would contain mostly information we are not interested
in.

Table 3.3 gives an overview over the characteristics of the frequent item-
sets we found for Maximal Frequent Itemsets (MFI), respectively. By do-
ing frequent itemset mining per keyword as described above, the number
of transactions increases to about 41 ∗ 106. However, the transactions are
short, in fact the maximal length is either 7 or 15 depending if the DCD
is used or not (1 keyword id followed by the clusterids). Keywords, that
generated less than 300 transactions (i.e. less than 300 images are labeled
with the respective keyword) are disregarded. This way 12407 keywords
where analyzed. The minimal support thresholds are set per frequent item-
set mining per keyword. The column “long rules” stands for itemsets that

33

Chapter 3 Semantics: Combining Visual Features and Text

min. support # of rules # long rules avg. abs. supp. runtime [s]

0.01% 21 818 132 13 458 731 2.48 3 541
0.1% 8 582 929 3 714 033 11.24 2 769
1% 2 726 716 79 685 24.28 1 688
10% 135 336 986 37.03 1 493

Table 3.3: Frequent itemset mining results. MFI per keyword, for 41 781
266 transactions in total.

contain several types of low-level feature clusters, e.g. EHD and SCD (and
obviously the keyword, since that is appended to every frequent itemset). I
we applied CFI instead of MFI it would result in more frequent itemsets,
since the MFI are per definition a subset of the CFI.

If we successfully found association rules which join text and visual fea-
tures, it turned out that many of them are semantically useless: In particular
the DCD, since applied to whole image, was distracted by background colors.
It turned out that in the DMOZ shopping category, where we collected most
of our data from, there are many objects on a white background. Thus, the
system identified many strong rules between objects like ”shoe” etc. from
shopping pages with the DCD cluster of dominantly white color. These
images could have been segmented quite easily but since for the moment
we rely on global feature, we just had to exclude the DCD in most of the
association rule discovery.

From Frequent Itemsets to Association Rules

When we want to discover semantic relationships in our data, the most in-
teresting associations are those that connect (key)words and visual features.
Suppose we found an MFI consisting of a word and image features. We can
either take the word as antecedent of our rule, or we can take the image
features as antecedent.

Example 3.2 One of the very strong MFI we found in our database was
{EHD249, shirt, EHD310, SCD493}, which appeared in 2160 transactions.
We can either define a rule {shirt → EHD249, EHD310, SCD493} or
{EHD249, EHD310, SCD493 → shirt}. Support and confidence are

support =
support{EHD249, shirt, EHD310, SCD493}

|D|

34

3.3 Data Mining for Semantic Clues Chapter 3

=
2160

3 ∗ 106
= 0.00072

confidence =
support{EHD249, shirt, EHD310, SCD493}

images labeled with ′′shirt′′

=
2160
43040

= 0.05

and

support =
support{EHD249, shirt, EHD310, SCD493}

|D|
=

2160
3 ∗ 106

= 0.00072

confidence =
support{EHD249, shirt, EHD310, SCD493}

images ∈ {EHD 249 ∩ EHD 310 ∩ SCD 493}
=

2160
2485

= 0.86

The results from example 3.2 are visualized in figure 3.3 along with
another MFI {shoe,EHD14}. The antecedent and consequent of the word-
image-feature rules are shown in the x-y-plane. The z-axis represents the
support of each rule, and the colors of the bars show the confidence. Note-
worthy are

1. The low support of all the rules: Most of our rules have support lower
than 0.1%!

2. The high confidence for the rule {EHD249, EHD310, SCD493 →
shirt}. Rules like that could be used to auto-annotate images, i.e.
assign keywords to images based on their features.

3. There are also rules shirt → EHD14 and EHD14 → shirt. These
are only shown to complete the picture. Their support is too low to be
discovered by frequent itemset mining in general. The potential rules
{EHD249, EHD310, SCD493 → shoe} and
{shoe → EHD249, EHD310, SCD493} do not exist, i.e. they have
support zero.

Point 1 can be further commented: If we consider the large number of possi-
ble keywords in our collection and the relative short ”documents” consisting
of only some 10-50 words, it becomes clear why the support cannot be high:

35

Chapter 3 Semantics: Combining Visual Features and Text

Figure 3.3: Several rules deduced from MFI in our database and their sup-
port and confidence

Let’s say we consider only 150000 Words listed in WordNet [22] significant
and we know that our inverted keyword index contains 60 ∗ 106 rows then
this makes in average about 400 images (transactions) per keyword — which
is compared to the total number of transactions of 3∗106 already very small,
namely 0.25%. If we want to increase the number of relations between image
features and keywords we could increase the number of keywords per image
by collecting more, but probably the precision of the keyword annotation
would decrease. Besides the support, the confidence needs to be considered,
too. In table 3.4 the confidence for the values from table 3.3 is shown. Only
rules keyword → {featureclusters} were analyzed. The columns list how
many rules have a confidence higher are higher than the respective value.
More illustrative than the absolute values are the percentages of the num-
ber of frequent itemsets (equivalent to rules in this case), which shown in
figure 3.4. There is a trade-off between lower support and longer rules or
higher support which results in higher confidence for our setup, since the
antecedent (the keyword) stays the same, the consequent changes to shorter
but more frequent items for higher support. It is interesting, that the 1%
series seems to have more items with higher confidence than 20% and 40%,
the 10% series seems to be shiftet to the left from that, i.e. more rules have

36

3.3 Data Mining for Semantic Clues Chapter 3

min. supp. # conf. >1% # conf. >5% # conf. >20% # conf. >40%

0.01% 504 0 0 0
0.1% 6531 600 0 0

1% 1 149 307 147 048 99 100 77 071
10% 58993 7124 340 33

Table 3.4: Support “distribution” for the frequent itemsets from table 3.3

Figure 3.4: Confidence for different minimal support thresholds.

confidence around 1%. This needs to be investigated further, which was not
possible because of the limited time.

The most important question in association rule discovery is how to
judge the interestingness of a rule. Criteria for interestingness can be either
purely statistical measures or can rely on background knowledge about the
data items. The latter we included already in the process of rule discovery
and even itemset mining: Remember that in the previous section, we decided
to do frequent itemset mining per keyword, since we are mostly interested
in rules that connect keywords and image features at the moment. Another
question is the length of the rules: Are we interested in long rules (which have
lower support by the nature of the problem) or are we interested in shorter
rules with higher support and confidence? The long rules certainly give more
information about the semantic relations in that they associate keywords
with texture and color. But the question remains if this information is
significant enough to build on. Lastly, it depends also on the application.
Purely statistical criteria can be used to identify rules with high information

37

Chapter 3 Semantics: Combining Visual Features and Text

Figure 3.5: How frequent itemset mining can be applied to gain insights into
semantics from different perspectives

content independent from the specific application. Given the time limits, we
used our background knowledge on the data and the support of an itemset
to chose our rules. In chapter 7 we will make a suggestion on a statistical
measure to be used to refine the rule selection. In the next section we will
discuss how these types of rules can be used in web image retrieval systems.

3.3.3 Exploiting the Semantic Rules

The different kinds of semantic rules can be exploited in several ways to
obtain improvements for image retrieval systems. Some of them options
are depicted in figure 3.5. Elements in orange color are discussed and im-
plemented in the system Cortina, elements in blue are discussed but not
implemented in the current version and elements with white background
are further options that are not discussed in detail in this thesis.

38

3.3 Data Mining for Semantic Clues Chapter 3

Identifying Interesting Low-Level Clusters

In our system, an initial keyword search is followed by a visual nearest neigh-
bor search with relevance feedback. Obviously, nearest neighbor search that
relies on visual feature information only, cannot succeed in returning exclu-
sively semantically relevant images. Consider the results from a pure visual
nearest neighbor search in figure 3.6. The query image is the one on the
top left, the initial keyword search was “shoe“. Two things are noteworthy:
While the first couple of results are shoes indeed, the other ones are not shoes
and appear only because of their visual similarity. The immediate idea is to
return only images which are visually similar and contain the keyword that
was searched for (“shoe“ in this example). However, our experiments have
shown, that since the keyword annotation is automatic and unsupervised,
often the matching keyword does not appear with the semantically and vi-
sually closest images. This is illustrated in figure 3.6 where the keywords for
the 10 visually closest neighbors for the image on the top left as query are
shown. Obviously objects that aren’t shoes don’t have the keyword shoe,
but note that 3 out of 6 images depicting a shoe don’t have the keyword
”shoe” assigned to them either. Eliminating images lacking keywords of the
original query would thus eliminate many correct matches.

As an alternative we introduce an approach which points the system to
places where the chance of finding images for a certain semantic concept is
high. Then the results are re-ranked not only on their visual similarity but
also on the amount of keywords they share. Currently, we consider a single
keyword as the semantic concept and link it to the low level clusters based
on simple association rules of the form

{Keyword} → {{EHDCluster1, . . . , EHDClustern}
{SCDCluster1, . . . , SCDClusterm},
{HTDCluster1, . . . ,HTDClusterk}},
|n|, |m|, |k| ≥ 0 (3.4)

Remember that in chapter 2.2.1 clusters were made highly overlapping
to capture the nearest neighbors in case they were spread over the borders
of the original clusters. The problem with this approach is, that it is not
very scalable. Now, consider the situation depicted in figure 3.7.

The feature vectors for a group of images belonging to a semantic concept
are spread over several clusters. With association rules as presented above,

39

Chapter 3 Semantics: Combining Visual Features and Text

Figure 3.6: The 10 visually closest images for the image on the top-left as
the visual query after an initial keyword search for ”shoe”. (Columnwise,
i.e. left column contains k-NN 1-5, right column 6-10.)

Figure 3.7: Images belonging to one semantic concept spread over two clus-
ters

40

3.3 Data Mining for Semantic Clues Chapter 3

Figure 3.8: A shirt from EHD cluster 249 (left) and one from EHD cluster
310 (right)

there is a chance that we discover this situation and can take both clusters
into account for visual nearest neighbor search without the need to create
large overlapping clusters. In fact, it turned out that this is really the case
if there is a strong enough connection between a keyword and some low
level visual feature clusters. For example frequent itemset mining returned
the itemset {EHD249, shirt, EHD310} which as a rule can be {shirt →
EHD249, EHD310}. It turned out that EHD clusters 249 and 310 really
contained a lot of similar images of t-shirts, as shown in figure 3.8.

To sum it up, the steps for similarity search are the following:

1. Look up the association rules for the original query-keyword.

2. Calculate the distances from the query-image to the centroids of the
set of clusters CA given by the association rules.

3. Load the n closest clusters from CA and the cluster closest to the query
vector if it is not already given by the association rules. (We usually
set n to 3).

4. Do a similarity search on all these clusters.

As mentioned in section 2.2.1 the selection of clusters in high dimensional
spaces based on the minimal feature vector distance might not always give
correct results, since high dimensional spaces show differences in behavior
compared to three dimensional spaces. The method to select candidates
from the clusters based on their semantic similarity obtained from meta-
data could be a general, pragmatic method to avoid some of the problems
in high-dimensional spaces.

In our case, the approach works well when there is a good connection
between a single keyword and low level features, i.e if the semantic concept

41

Chapter 3 Semantics: Combining Visual Features and Text

keyid ehds scds htds support

24782 14, 870
24782 421, 837
24782 418, 678
24782 536, 606
24782 302, 496
24782 501, 457
24782 453, 418
24782 379, 398
24782 335, 271
24782 272, 268
24782 419, 247
24782 418, 235
24782 355, 229
24782 417, 181
24782 421, 180

Table 3.5: Top 15 maximal frequent itemsets for the keyword ”shoe”. (In
total, 15639 images are labeled with the word ”shoe”)

is well-described by this single keyword and the semantic concept can be
expressed by some low level feature characteristics. For instance ”shoe”,
”shirt” and similar objects can be described this way, more abstract concepts
like ”clinton” or ”holiday” can not be expressed by low level features in
general, which means that association rules for these cases will be less precise
in general.

A-priori Weights for Relevance Feedback

The association rules collected for each keyword can not only be exploited to
define the search space, they also contain information on how well a visual
descriptor type describes the keyword or the semantic concept related to it.
For instance, table 3.5 lists the top 15 maximal frequent itemsets found for
the keyword shoe (id 24782). Most of the rules connect the keyword with an
EHD cluster, some of them connect the keyword with an SCD cluster and
no connections seem to exist for the keyword and the HTD clusters. From
this one can argue that the images labeled with ”shoe” in our database

42

3.3 Data Mining for Semantic Clues Chapter 3

are best described with the edge histogram descriptor or the scalable color
descriptor. A look at these images in our database actually shows that they
are most often catalog-like images with a shoe on a white background. This
is described well by the edge histogram since in this case the distinctive
shape of shoes is captured by the descriptor, the white background gives
the coherence for the scalable color descriptor. This means we can preset
the weights for formula 2.3 for the combination of the individual descriptors
for the first round visual nearest neighbor search - we call this the a-priori
weight. In this case we would set the EHD the highest, some medium value
for the SCD and a very small value for the HTD.

If only one image is selected for the first round of visual nearest neighbor
search, the weights can be taken as obtained from the frequent itemsets. If
several images are selected we have to combine the a-priori weights and
the weights obtained from the information of the selected images. We just
initialize the weights for iteration 1 of relevance feedback with our a-priori
weights, as if there had been an iteration 0 of relevance feedback.

Re-Ranking Visual Results with Text

Showing the results of a visual nearest neighbor search ordered only by their
visual distance is suboptimal. The results should be sorted based on their
overall or semantic similarity, i.e. the keywords should be considered, too.

As it has been shown in the preceding sections (see also figure 3.6) not
all the images in the result-set of a visual nearest neighbor search are labeled
with the original query keyword(s). The introduction of association rules to
identify clusters which contain many images labeled with the original query
keyword(s), and the expansion of the search to these clusters increases the
probability of finding images which are labeled with the query keyword(s)
within the firs k retrievals. However, the semantically close results might
still be visually farther from the query than some wrong matches. To rank
these results higher, we rely on the keywords. We do not only take the
original query keyword(s) entered by the user, but also all the keywords
assigned to the image selected by the user as input for relevance feedback.
This gives us a set of ranking keywords R. Then we simply divide the visual
distance by the number of common keywords of the query images q and the

43

Chapter 3 Semantics: Combining Visual Features and Text

retrieval candidates ci, i.e.

dsem(q, ci) =
dvis(q, ci)

|keywords(ci) ∩R| (if |keywords(ci) ∩R| �= ∅)

where dvis(q, ci) is the visual distance between the query vector q and the
retrieval candidates ci.

This improves the correct ordering of the results significantly — however
only if the query and the candidates share common keywords. In fact, a
query and a candidate might share some common keywords such as ”size”
which can appear in many contexts and describes no clear semantic concept.
Another candidate might have no common keywords with the query but a
different keyword which describes the correct concept (polysemy) — the
wrong image gets ranked higher in this case. As an example consider figure
3.6 again: The image on the top right is labeled with ”walk” which is clearly
semantically close to the query (”shoe”) but does not appear in the list of
query keyword(s).

As one solution to this problem we suggest to use semantic distances be-
tween keywords instead of direct matches. These distances can be obtained
from a thesaurus like WordNet [22]. In fact, there exist very recent propos-
als [41] and even publicly available implementations to find these semantic
distances between words.

In general one might also further investigate the possibility to include
the keyword ranking somewhat tighter into the relevance feedback process.

Semantic Clusters from Association Rules

Suppose we want to sort our documents in a semantically meaningful way
based upon the combination of textual and visual features. The benefit could
be a organization of the data which allows semantic browsing, or another
”layer” of clustering on top of the visual clusters which incorporates bot
visual and text information. If we had such a clustering, the search space
could be limited to these semantic clusters and visual nearest neighbors
would only be retrieved from a set of images that are semantically relevant.

We want to achieve this with the frequent itemsets found in the previous
sections, i.e. we want to follow the option of semantic clustering as shown
in figure 3.5. We discovered that Ester et al. recently introduced several
algorithms to cluster text data based on frequent itemsets or frequent terms,
as the authors call them in the context of text documents [42, 43]. As an

44

3.3 Data Mining for Semantic Clues Chapter 3

experiment we wanted to see how well the method performs if we applied
it to our dataset which means also to extend the context of the method
from pure text clustering to multi-modal data clustering. In [42] two simple
clustering algorithms are introduced, one of them builds a hierarchy the
other just independent clusters. In [43] the method is improved with better
algorithms. Since we are interested in the general applicability of the method
we chose the simplest algorithm.

All the algorithms rely on a frequent itemset mining of the dataset.
Each frequent itemset is a candidate for the ”core” of an additional cluster.
The clusters are built under the restriction that the overlap between them
is minimized, which is the only criterion for clustering. Note that thus no
distance measure needs to be defined, which is very useful since defining
distances (e.g. what is the ”semantic” distance between two images which
includes both text and visual feature information?) for multi-modal datasets
can be very difficult.

Let F = {F1, . . . , Fk} be the set of all frequent itemsets in our database
|D|. Let fj bet the number of all frequent itemsets supported by document
Dj

fj = |{Fi ∈ R|Fi ⊆ Dj}|

where R is a subset of F , the subset of remaining frequent itemsets. Since
each Fi ∈ F is a candidate for the creation of a new cluster Ci, R is the
set of Fi which have not yet been defined as a cluster. The entropy overlap
of cluster Ci with the other clusters is defined as the distribution of the
documents in Ci over all the remaining cluster candidates:

EO(Ci) =
∑

Dj∈Ci

− 1
fj
∗ log(

1
fj

)

EO(Ci) is zero if no document in Ci supports any other frequent term set,
i.e. fj = 1 ∀ Dj ∈ Ci. It increases monotonically with increasing fj.

A greedy algorithm FTC is defined in [42], and shown in algorithm 2.
In each iteration the algorithm selects the candidate Fi from the set of
remaining frequent itemsets R, whose cover has the minimum overlap with
the other clusters, and defines it as a new cluster Ci. Then the documents
in the cover cover(Fi) are assigned to Ci.

The algorithm FTC was applied to a subset of our data, namely 80000
images from the DMOZ clothing category. Frequent itemset mining was

45

Chapter 3 Semantics: Combining Visual Features and Text

Algorithm 2 FTC: Frequent Term-based Clustering
1: SelectedItemSets← {}
2: n← |D|
3: R← DetermineFrequentItemsets(D,minsup)
4: while cover(SelectedItemSets)| �= n do
5: for all Fi ∈ R do

6: Calculate overlap for Fi

7: end for

8: BestCandidate← Fi with minimum overlap
9: SelectedItemSets← SelectedItemsets ∪BestCandidate

10: R← R \BestCandidate

11: Remove all documents in cover(BestCandidate) from D and from
cover(Fi ∈ R)

12: end while

13: return SelectedItemsets and cover(Fi) ∀ Fi ∈ SelectedItemsSets

again performed with the fpmax* algorithm [39]. As in the previous sec-
tions it turned out that the associations within the text are stronger than
associations between text and visual features. We thus chose only the fre-
quent itemsets as input for the FTC algorithm, which consisted of keywords
and visual feature information. It turned out that the most frequent com-
binations of text and low level features contained words words like price,
item, size, color etc., which are semantically meaningless. Removing these
words gave some benefit, e.g. we found many semantic clusters for ”shirt”
which appeared in different contexts, i.e. different low level feature clusters.
However, in general the associations were not strong enough to enable a
semantic clustering or browsing hierarchy. I believe that the method might
bring good results for other multi-modal datasets, e.g. biological images
with meta-data. Thus I suggest further research into applying Ester et.
al.’s text-algorithms for multi-modal multimedia datasets.

3.3.4 Summary of Semantic Improvements for Visual NN

Search

Several semantic improvements to visual nearest neighbor search have been
suggested in the preceding sections. The improved visual nearest neighbor
search process in our system can be summarized as follows:

46

3.4 Improving Text-Based-Search with Visual Features Chapter 3

1. Look up the association rules for the initial query-keyword.

2. Calculate the distances from the visual query-vector q to the centroids
of the set of clusters CA given by the association rules.

3. Load Cs: The n closest clusters from CA and the cluster closest to the
qv if it is not already given by the association rules. (We usually set
n to 3).

4. Set the a-priori weights of the descriptors according to the information
given by the association rules.

5. Do a similarity search on all these clusters.

6. Re-rank the results based on the initial query-keyword and the words
obtained from the selected images

These improvements lead to semantically more relevant results for visual
nearest neighbor searches, based on text assigned to the images. This will
be quantified in chapter 5. In the next section we suggest a method which
achieves the opposite: The improvement of keyword-searches with visual
features.

3.4 Improving Text-Based-Search with Visual Fea-

tures

Since we have both textual and visual features it would be interesting to see if
the visual features can be used to support query-by-keyword. I suggest a re-
ranking of the query-by-keyword results based on visual feature information.
To my knowledge, no web image retrieval system exists that uses visual
features as a direct support for query-by-keyword.

3.4.1 The Visual Link

In this section, a new, graph-based method is described which achieves a
ranking of query-by-keyword results based on visual features and text as
opposed to the commonly used text ranking. The basic concept is the fol-
lowing: Let I(Q) be a set of images matching a keyword query Q. Let df

ij be

47

Chapter 3 Semantics: Combining Visual Features and Text

Figure 3.9: A typical graph with visual links.

the (euclidean) distance between the feature vectors i and j of visual feature
type f . Then an undirected graph G(V,E) can be defined as follows:

V = {i | i ∈ I(Q)}
E = {{i, j} | df

ij < dthresh}, f ∈ (SCD,EHD)

wij =
1

dEHD
ij ∗ dSCD

ij

if {i, j} ∈ E (3.5)

where dthresh is a minimal distance threshold which is defined based on the
distribution of the distances for feature type f and wij is the weight assigned
to edge {i, j}. In other words: images that are separated by a distance
smaller than dthresh are connected by an edge which can be thought of as a
visual link. The edge weight is the inverse of the product of the distances.
Links can be created based on several feature vector types f . In our system
one color descriptor and one texture descriptor were chosen, namely the
Scalable Color Descriptor and the Edge Histogram Descriptor. Note that
the number of distance calculations is

N ∗ (N − 1)
2

, N = |I(Q)| (3.6)

Recall the following concepts of basic graph theory: A graph is connected if
there is a path from any point in the graph to any other point. Otherwise the
graph is said to be disconnected. A group of vertices in a disconnected graph
that is reachable from one another is called a connected component. In our
case, a choice dthresh < dmax, where dmax is the maximum distance between
two feature vectors in V , results in a disconnected graph G. The number
of connected components increases with decreasing dthresh and reaches a
maximum of |V | for dthresh = 0 if all the elements in |V | are distinct. Each
connected component C ∈ G consists of a set of visually similar images,
based on the feature types f . An example of a Graph can be seen in figure

48

3.4 Improving Text-Based-Search with Visual Features Chapter 3

Figure 3.10: A closer look at a connected component

3.9. (The example was built with a reducet set of results from a keyword
query. The actual graphs are too large to visualize them easily.) A closer
look at one of the connected components is given in figure 3.10. It contains
a particular set or concept of shoes, namely white woman’s shoes.

An analysis of the graph G will now be done under the following as-
sumptions:

• If a component C is large, i.e. it consists of many similar images for
the keyword query Q, it represents the semantic concept of the query
Q better than a very small component.

• The inherent average similarity of the component C is a measure for
its quality or consistency.

• One or several representatives rC can be chosen to summarize the
concept described by the component C.

This leads to the following simple algorithm for a semantic analysis of G:

49

Chapter 3 Semantics: Combining Visual Features and Text

Algorithm 3 Find Representatives
1: for each connected component C ∈ G do

2: rC ← 0
3: for all v ∈ {C, V } do

4: if weight(v) > weight(rC) then
5: rC ← v

6: end if
7: end for

8: {rC} ← rC

9: end for

10: return {rC}

The weight function weight(v) is defined as follows:

weight(v) =

 ∑

e∈edges(v)

weight(e)
degree(v)

 ∗ keywordscore(v)

The weight depends on the normalized similarity of each node to it’s neigh-
bors, i.e. a node which has a high similarity to all of it’s neighbors is thought
to be very ”central” for this component. In addition, the original keyword
score of the image (the node) is taken into account, since we don’t want to
loose this valuable information.

Before the list of representatives {rC} is returned to the user, we suggest
a ranking of the representatives:

rank(rC) = f(size(C), avgdegree(C), avgkeywordpos(C))

A larger component (size(C)) is more important than a smaller one, the
average degree avgdegree(C) is a measure for the similarity within the com-
ponent and the avgkeywordpos(C) is the average keyword-ranking of all
the documents in component C. For f we chose a simple, weighted linear
combination of size(C), avgdegree(C) and avgkeywordpos(C).

3.4.2 Approximations for Faster Graph Construction

While the approach as presented above is very compelling, it is hard to run
it fast enough to present the results to the user within a reasonable amount
of time. In fact, a keyword query can return several thousand matching

50

3.4 Improving Text-Based-Search with Visual Features Chapter 3

ImageID ClusterId 2ndClusterId ReldDist

28821 33 12 0.6
28822 245 23 0.2
28823 1 6 0.5
28824 222 444 0.9
28825 3 199 0.3
.

Table 3.6: Relational DB table to approximate distance calculations

images and the number of distances to calculate gets very high as given in
equation (3.6). Computationally demanding are in particular

1. The loading of the feature vectors. Since the images are not all visually
close, the clusters as presented in chapter 2 can not be used. Look-
ing up and loading the individual feature vectors from the database
is required. The image identifiers of the feature vector table are ob-
viously indexed but matching them with the image table and loading
the vectors (from different locations on the hard-drive) is very time-
consuming.

2. The calculation of the distance itself.

Thus, the following approximation was introduced, which reduces the com-
putational time to a minimum. A table as shown in 3.6 was added to the
relational database.

Instead of checking if the distance between two images falls below the
threshold dthresh as introduced above, we first check if the images are in the
same cluster using the column ClusterId. If they are in the same cluster, we
check if their relative distance to the cluster’s centroid is in the same range
r. The relative distance in column RelDist is the distance to the cluster’s
centroid divided by the distance to the cluster member that is the farthest
from the centroid - which is a measure for the size of the cluster. As shown
in figure 3.11 we capture all the vectors within a layer of thickness r in the
hypersphere around the centroid of the cluster.

Further improvements where achieved by setting r not uniformly but
based on the distribution of the relative distances to the cluster centroids
RelDist: Consider figure 3.12 which shows this distribution. (Note that

51

Chapter 3 Semantics: Combining Visual Features and Text

Figure 3.11: Candidates C within a layer of thickness r around the query
Q, and centered at the cluster centroid are considered similar, i.e. linked.

0 0.5 1
0

1

2

3
x 10

5

Rel. distance to EHD cluster centroid

N
um

be
r

of
 Im

ag
es

0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

x 10
5

Rel. distance to SCD cluster centroid

N
um

be
r

of
 Im

ag
es

0 0.5 1
0

2

4

6

x 10
5

Rel. distance to HTD cluster centroid

N
um

be
r

of
 Im

ag
es

Figure 3.12: Relative distances of feature vectors to their cluster centroids

the distributions show the same form as the overall distance distribution
in figure 2.5). We chose a small r if the RelDist values of both images to
compare were within the peak area of the histogram and some larger value
if at least one of the images was at the border of the histogram.

To further improve the approximation one could take the angle within
the layer r into account. We can obtain it from the cluster that is the next
closest for the given image, which is stored in the column 2ndClusterId.
Some characteristics of this approximation are noteworthy:

• We don’t find all the links that should exist since images that lie at
the borders of a cluster may have very close neighbors in the adjacent

52

3.4 Improving Text-Based-Search with Visual Features Chapter 3

clusters.

• The use of the next-closest cluster to approximate the angle is a rather
strict measure, especially if the query is close to the perpendicular
bisector between tow nieghboring clusters. Also, it is questionable
how good a measure of direction this is in high-dimensional spaces.

• In contrast, within the cluster the relative distance range r can be
adapted to capture distances within any desired range. However, with-
out the restriction of the angle it introduces ”wrong” links to vectors
on the ”opposite side” of the hypersphere.

The required table can be calculated off-line rather easily. It can even be
integrated into the clustering procedure at nearly no extra cost.

We observed that in very rare cases too large connected components are
created whose inner similarity is not strong enough any more. A simple
solution to this problem would be to calculate the minimum spanning tree
and the (feature-)distance between the images at the end and start points,
respectively. If the distance is larger than a threshold value, the component
could be either split or several representatives along the minimum spanning
tree could be chosen instead of only one.

Some figures are presented to illustrate the results. In figure 3.13 the
first 16 images for the result of the query ”shoe” are given. In figure 3.14
the result for the same query but this time with our semantic search as
introduced above is shown. It can be seen that the noisy, pink images
are reduced to one image. 14 out of 16 images are shoes. The system
increases diversity and significance on the first page. In figure 3.15 a search
for ”apple” is shown that produces only noise on the first page of results.
This happens when many identical images with the same keyword but from
different locations are collected. In figure 3.16 the same query summarizes
the noisy results to one image. Note that on the first page both the oncepts
”Apple Macintosh” and ”Apple the fruit” are present. One could argue that
images that appear very often and look the same could just be removed from
the database. But it is difficult to do that in an unsupervised manner and
for every possible keyword. Also, often the same image appears in different
contexts, i.e. on different pages with different additional keywords which
could be a potentially interesting information about semantics.

53

Chapter 3 Semantics: Combining Visual Features and Text

Figure 3.13: First 16 results for query ”shoe” before connected component
analysis

Figure 3.14: First 16 results for query ”shoe” after connected component
analysis

54

3.4 Improving Text-Based-Search with Visual Features Chapter 3

Figure 3.15: First 16 results for query ”apple” before connected component
analysis

Figure 3.16: First 16 results for query ”apple” after connected component
analysis

55

Chapter 4 Software Design

Chapter 4

Software Design

A substantial part of our work consisted of implementing the system and
methods described in the previous chapters as a working system, which could
be scaled to even larger dimensions than it is now. This chapter describes
how such a system can be designed from the software and computer system
point of view. Figure 4.1 shows the hardware setup. Processing and web-
serving were done on a Apple G5 Dual 2GHz computer with 2GB RAM and
OS X as an operating system. A Terra-byte disk-array was used as storage
for the data collected from the WWW. Software was written in C++ and
Perl only. The following sections discuss the challenges met and decisions
made to design a large-scale image retrieval system.

Figure 4.1: Hardware setup

56

4.1 Collecting the Data Chapter 4

4.1 Collecting the Data

The DMOZ open directory project was taken as a starting point for our
data collection. To be specific, from the data DMOZ offers as a RDF 1

(Resource Description Framework) file we took URLs from the Shopping and
Recreation categories. The data was entered into our relational database.
From there, a web-crawler written in Perl took over. It takes the URLs
and analyzes the web page for links and images. Links within the same
directory of the URL are added to the queue of URLs to visit. Image tags
are analyzed and the obtained information is entered into a table in the
databases. Namely the image URL, its dimensions and the URLs of the
web-site and the document the image was embedded in. Most importantly,
the words from the image’s ALT-tag and maximal 20 words above and 30
words below the image were stored, too. Also the category information from
the DMOZ open directory was stored, however, in our work we never used
it, except to organize storage. An additional Perl script downloaded all
the images from the web and deposited them on the storage server. Note
that one can easily reach file system limitations in that large a system:
For instance most operating systems allow only some ten-thousand files per
directory and our intend was to store millions rather than thousands. We
decided to deposit the images in subdirectories corresponding to the DMOZ
directories.

4.2 Extracting Features

Feature extraction was implemented in C++. Low level access to images
was done with the C++ API to ImageMagick 2. The feature vectors were
stored in binary format: As BLOB (Binary Large Object) field in a relational
database table and as a individual files on the Terra-byte disk array. This
way a backup was generated on the fly. The software loads a set of images
from the Terra-byte storage, calculates the features while keeping the results
in memory and writes them to storage only as the last image of the set
has been processed. In our final, highly optimized version of the code we
were able to extract EHD, HTD, DCD and SCD of about 2 ∗ 105 images

1http://www.w3.org/RDF/
2ImageMagick is a collection of tools and libraries to read, write, and manipulate an

image in many image formats. http://www.imagemagick.org

57

Chapter 4 Software Design

in 24 hours on the G5 2*2GHz platform. This means that the process of
extracting features for our 3 ∗ 106 images takes 15 days with optimal code
and full processor load!

4.3 Software Layers

Figure 4.3 shows the layered approach we took while designing our system.
The design philosophy was motivated by

• finding an appropriate technology for each task

• at the same time keeping the number of programming languages small

• using standardized code and freely available applications

Software was written in Perl and C++. C++ was mostly used for the low
level image feature related code since here speed is crucial and C++ offers
the possibility to design appropriate data structures. Only ANSI C++ and
standard libraries were used, which makes the code portable. As a compiler
GNU gcc for OS X was used. Perl was mostly used for WWW related tasks
such as collecting and processing the textual data, since it offers fantastic
capabilities when it comes to handling text strings. Perl was also used as
a middleware between the client (i.e. web-browser) and the image retrieval
components written in C++. Fortunately, the CPAN 3 repository offers
a lot of useful Perl libraries which are extremely helpful to rapidly deploy
a system as ours. Perl allows fast prototyping of code which can then be
transformed into web-applications without much effort. All the libraries
used are released under some kind of Open-Source license. This means all
of them are free for research purposes and costs for commercial use are very
low.

4.4 Relational Database

As mentioned on several occasions a relational database is at the heart of
our system. We chose such a system, because it offers simple methods to
build and access structures like inverted indices or just to store tabular
information like all the meta data that comes along with our images. The

3http://www.cpan.org

58

4.4 Relational Database Chapter 4

Figure 4.2: Simplified Entity Relationship Diagram (ERD) for our mySQL
Database

product we operate with is mySQL. It is freely available 4. mySQL showed
good performance, for instance the inverted index consists of a table with
about 60 ∗ 106 rows. However, understanding how mySQL works and using
the right parameters (in particular setting the correct indices on the proper
columns) turned out to be crucial. Figure 4.2 shows a structural diagram of
the database. The table image is at the heart of the structure. It contains all
the information for each image collected from the WWW, such as size, url,
etc. The field status is set depending on if the image has been downloaded.
The field featurestatus is set if the features were successfully extracted.
Note that only information associated with each image ist stored in this
table, i.e. the images themselves are stored on the an external storage
server. The location of the file on this server is identified by the imageid
and categoryid. The tables feature_* contain the feature vectors for each
feature type. A keyword query is done on the inverted index imagekeys

after looking up the keyid for the entered keywword in the table keywords.
4http://www.mysql.com

59

Chapter 4 Software Design

The table keywords is indexed on the column keyword, the table imagekeys
on the column keyid. Listing the individual keywords (character data) in an
extra table and indexing them there increases performance significantly since
the number of rows in keywords is much smaller than the number of rows in
imagekeys. Thus we need only an index on a numeric column in the large
table imagekeys. The table clusters lists to which clusters each image
belongs. The table rules contains the association rules sorted by keyword.
The table ltrfb is used to store long-term relevance feedback, i.e. for each
user that enters the system the keywords he enters and the images that are
selected as relevant are stored. The table wordnet contains the words we
extracted from the WordNet [22] database. These are only the tables that
are significant for the implemented system, some of them contain also more
columns than shown. In reality we used about twice as many tables for
experiments with different types of association rules, restricted amounts of
keywords etc. For the interested reader some parameters: We used mySQL
version 3.23 for OS X. Table types are MyISAM. Access to mysql was done
with the MySQL C API from C++ and DBD::mysql from Perl. We used
version 3.3.2 of mySQL. The newer version 4.0 would enable us to achieve
even better performance. E.g. in version 4.0 it is possible to load certain
indices to memory manually and keep them in memory persistently. This
would allow us to speed up the search process significantly.

4.5 Middleware

The connection between the low level application layer written in C++ and
the Perl middleware was established using Inline::CPP. Inline::CPP allows
the embedding of C++ code in Perl and in particular C++ functions can be
called from Perl. The C++ code was compiled with gcc. Libtool was used
to create a dynamic library from the object files. The classes and functions
within this library can then be accessed through Inline::CPP which takes
the library as a parameter. For this purpose a section in the Perl script is
reserved where wrapper functions establish the connection between Perl and
C++.

As a web-server Apache 5 was chosen. Apache calls Perl via the Common
Gateway Interface (CGI). For an application with many users instead of

5http://www.apache.org

60

4.6 Presentation Layer Chapter 4

Figure 4.3: Software Layers

using CGI we recommend to use modPerl. modPerl is a persistent Perl
interpreter embedded in the Apache web-server. This means that time-
consuming calls to the external Perl interpreter through CGI are obsolete.
For the relevance feedback variables for each user need to be stored across
several steps of relevance feedback. Since HTTP is a connection-less protocol
we needed to store the data in sessions. Session-functionality is provided by
the Apache web-server and was accessed from Perl via CGI::Session.

Further noteworthy technologies include the Boost Graph Library and
GraphViz. The Boost Graph Library [44] was used to implement the con-
nected component analysis in chapter 3.4. It is claimed to have some of the
fastest implementations of algorithms and graph access and is a candidate to
be included in the C++ standard libraries. GrahpViz is a tool from AT&T
which allows visualization of graphs. It can be called from the command
line and this way be included into applications. Its SVG export capabilities
allow display of graphs in web browsers. This could be the base for a more
immersive, interactive, yet standards-compliant interface to multimedia re-
trieval applications on the web.

4.6 Presentation Layer

The interface with the user is an important element of every multimedia
application. For applications on the web certain constraints like accessibil-
ity, portability and possibly low bandwidth have to be taken into account.
We decided to implement an interface which displays and allows in every
common web-browser without the need of additional plug-ins like Flash or

61

Chapter 4 Software Design

Figure 4.4: Cortina WWW interface

Figure 4.5: Cortina WWW interface detail

Java applets - which may not be installed at all at the client or need extra
bandwidth. Thus, the interface was designed in pure, standards-compliant
XHTML and interactivity was enriched with the help of ECMA-Script (for-
mer Java-Script). The XHTML markup was separated from the underlying
Perl code by using a template mechanism. In particular the Template li-
brary from CPAN was used. Figure 4.4 shows the web-interface to the
application. The interface shows also information about the query and how
it was handled by the system: for instance, in figure 4.5 an element of the
interface is shown where the weighting of the descriptors is presented to the
users.

62

Discussion and Further Results Chapter 5

Chapter 5

Discussion and Further

Results

The first, prominent result of this work is the contribution to the imple-
mentation of Cortina, our large-scale, content-based image retrieval system
for the World Wide Web. To our knowledge it is the largest, content-based
image retrieval system available to date, with over 3 Million 1 images. The
reader is encouraged to try 2 the system.

In the following, the system and and its performance shall be discussed
in detail, in particular we focus on:

• The concept of a high-level keyword search followed by a visual nearest
neighbor search with relevance feedback in distinction to either pure
text-based search or pure query-by-visual-example.

• The improvements of this process based on the semantic analysis of
the data, and the scalability of the methods suggested to exploit them.

5.1 Measuring the Quality of Search Engines

An imminent question in the information retrieval community is how to
measure the quality of a search method or search engine. In general, when
methods for information retrieval are proposed, they are tested on a small
set of data, the exact composition of which is known to the researcher. This

1We are currently collecting more images and hope to increase the size of the collection

to over 10 Million
2Try http://sobel.ece.ucsb.edu or http://www.cortina.ch

63

Chapter 5 Discussion and Further Results

dataset is commonly called the ground truth. To measure the quality of
a method the precision and recall measures are applied [45]. The desired
results D for a query are known from the ground truth, A describes the
actual query results and within A there is a set of correct results C. Precision
P and recall R are

P =
|C|
|A|

and
R =

|C|
|D|

For large scale experiments as ours, there is no such ground truth and we
can definitely not measure the recall R. However we can get some notion
of the precision with some slightly modified concept for P , as will be shown
below.

As a side note: There seems to be the need for some benchmark to
compare retrieval systems. The TREC conferences [46] offer such bench-
marks for text retrieval. Similar, large-scale multimedia datasets would be
needed to compare the performance of retrieval systems. Several efforts are
underway to create such datasets, e.g. at the Viper [47] project at the Uni-
versity of Geneva. In particular a large-scale benchmark dataset consisting
of images and keywords would be needed to compare multi-modal retrieval
techniques.

We decided to take the precision based upon results from user question-
ing as a measure for the performance of our system.

5.2 Overall Precision of the Image Retrieval Sys-

tem

The precision of the system was measured with user questioning. The par-
ticipants had to complete the following steps

1. Enter a keyword query, count correct results.

2. From the results, select one image. Count how many very similar
images there are and how many conceptually similar in the first 8 and
first 16 positions. Do a similarity search with this image as input.

3. Count how many very similar images and how many conceptually sim-
ilar there are in the first 8 and first 16 positions. From the results,

64

5.2 Overall Precision of the Image Retrieval System Chapter 5

select all the very similar images and do another round of similarity
search.

4. Repeat step 3. once.

Steps 2.–4. where repeated for three different images per keyword query.
Five persons participated in the tests, the total number of queries was 11∗3 =
33. The keywords were

shoe, bike, mountain, porsche, bikini, flower,

donald duck, bird, sunglass, ferrari,

digital camera

The terms ”visually very similar” and ”conceptually similar” where ex-
plained to the user with an example: If the original keyword query was
”shoe” and one had chosen a black shoe as visual query, every result that
contains a black shoe is visually very similar. Other shoes are conceptually
similar, images not related to ”shoes” are wrong matches.

The precision was measured with

P =
|C|

|A| ∈ {8, 16} , (5.1)

where

C ∈ {visually very similar, conceptually similar}

i.e. it was measured how many correct matches were returned in the first
8 and first 16 results respectively. C (”correct results”) was defined as
”visually very similar” in the one case and as ”conceptually close” in the
other. It is evident that these measures contain some degree of subjectivity,
but by having several persons and several visual queries per concept we hope
to minimize these effects. A sample sheet as given to the persons questioned
is shown in appendix C.

The graphs in figures 5.1 and 5.2 show the results of our precision ex-
periments. The precision as in equation (5.1) is shown on the y-axis, along
the x-axis are the several steps of the experimental queries, starting with
a keyword-query and followed by three steps of relevance feedback on the
visual appearance. Four series of results are shown per graph: Once for the
search without the improvements discussed in chapter 3 (labeled ”Normal”),
and once with the improvements based on the semantics in the data (labeled

65

Chapter 5 Discussion and Further Results

Figure 5.1: Precision curve for visually very close images.

Figure 5.2: Precision curve for conceptually close images.

66

5.2 Overall Precision of the Image Retrieval System Chapter 5

”Semantic”). For each experiment the precision based on the first 8 and first
16 query results is shown.

It can be seen that visual nearest neighbor search and relevance feedback
improve the precision compared to pure keyword query results. In the case
of close visual neighbors (figure 5.1), especially the improvements from the
initial results to the first round of relevance feedback are significant. The
improvements for the conceptual search are not as good as for the close
visual neighbors, which was to be expected, since words describe higher
level concepts much better than visual features. But when it comes to
the precise look of an image the visual features take over. These results
clearly show the benefits of an initial keyword query to identify the higher
level semantic concepts, followed by a visual nearest neighbor search with
relevance feedback to redefine the query based on visual appearance, i.e. the
lower level semantic concepts.

Both graphs clearly show the positive effect of the improvements which
were the focus of the thesis at hand: The semantically improved version of
the search outperforms the original version. In particular it performs sig-
nificantly better in the case of conceptual close images, where the precision
is about 15% higher. This is due to the introduction of clusters identified
by association rules into the visual nearest neighbor search: More images
matching the higher level semantic concept, but perhaps not situated in
the same visual feature cluster as the query, are ”injected” into the results.
The improvements are amplified by re-ranking the results based on their
keyword similarity. This can also be deduced from the curves for the eight
nearest neighbors: The re-ranking of the results lets some lower ranked
results ”jump” into higher positions. In general, it turned out that the se-
mantically improved retrieval was equal or better to the normal version in
nearly all cases and performed weaker very rarely. This has to be consid-
ered in relation to the scalability: As listed in Appendix A the size of the
non-overlapping clusters for the semantic search is 7.3 GB - the size for the
overlapping clusters is 53 GB, roughly a factor 7!

If one compares the exact values for the precision in both figures, it can
be seen that the normal version of the relevance feedback saturates roughly
between 0.2 and 0.25 in both figures, which means that the conceptually
similar and visually very similar images are in fact more or less the same,
i.e. there are no additional, conceptually similar images to the visually very

67

Chapter 5 Discussion and Further Results

Figure 5.3: Query images selected for relevance feedback. Initial keyword
query was “sunglass”

close images. But the semantic version reaches over 0.4 in figure 5.2 and
about 0.3 in figure 5.1, which means it adds 10% conceptually similar images.
The drop of the semantic version in the second step of relevance feedback
is noteworthy: It is mostly caused by one sample in the experiments which
gave comparably bad results for this step. By averaging over more queries
the curve might become flatter at this place. However, it is very important
to see that the curve goes up for the third step again. Since the semantic
version introduces more conceptually close images to the results and not
only visual nearest neighbors, the user has the possibility to select images
which bring the system back ”on track”, which is not the case with pure
visual nearest neighbor search - here, one is often stuck with the few correct
results and one has no way to adapt the query. In fact, this can also be
seen from the relevance feedback in the normal version: the curve drops for
the third step of relevance feedback, no improvements are made from there.
It would be interesting to see if an even larger dataset would improve this
situation: often there seem to be just no more semantically and visually
very similar images available. In a pure scientific dataset with a ground
truth this could be measured with the recall values, but in our setup this is
impossible.

The results are also illustrated with a visual example: In figure 5.4 results
for the normal version of relevance feedback is shown. The images in figure
5.3 were selected as a query. The results for the same query but with the
semantic version are shown in 5.5. The examples show that the semantic ver-
sion sometimes achieves significant improvements over the normal version.
In this example, the improvements result probably from the difficult query
vector: The combination of the (texture) feature vectors of the sunglasses in
figure 5.3 moves probably from both individual images, since the orientation

68

5.3 Frequent Itemset Mining and Semantic Rules Chapter 5

of the two query objects is different. The color feature vectors are sensitive
to the white background and some gray/silver mixture in the query. The
semantic version is not affected as strongly, since it loads clusters with many
sunglasses — the normal version loads only the (overlapping) cluster with
the centroid closest to the combined query vector. The improvements with
the semantic version are not always that good — in most cases the results
are comparable or only slightly better than the normal version, but with
better scalability.

The results in the graphs 5.1 and 5.2 suggest that the semantic version
of the search outperforms the normal version. However, it must be stated
that the associations between keywords and image feature clusters were not
very strong in general, such that sophisticated methods like auto-annotation
or image understanding are overambitious with dataset as it presents itself
at the moment, i.e. the uncontrolled character of the WWW data poses
extraordinary challenges.

5.3 Frequent Itemset Mining and Semantic Rules

To explore the underlying semantics in the data, frequent itemset mining
has been identified as a very scalable method to identify relations between
keywords and image feature (clusters). The complexity of the method is
far lower than the methods discussed in related work. Figure 5.6 shows the
runtime of the frequent itemset mining (done per keyword) for our roughly
40 ∗ 106 transactions (over 12407 keywords) with different minimal support
thresholds. The mining takes about half an hour for the transactions gen-
erated from our 3 ∗ 106 images. The difference between MFI and CFI is not
very significant. Also, the curve for the runtime is rather flat in the depicted
range — this could be explained by the rather short transactions. Since the
relation between the number of keywords and the number of images is linear,
the method should also scale linearly with larger datasets.

The values from tables 3.3 and 3.4 are the source for figures and 5.7
and 5.8. It can be seen that the number of “long” frequent itemsets is
somewhat lower than the overall amount of frequent itemsets and that the
support is low in general. (Remember, that an itemset has been defined as
“long” if it associates a keyword with several low-level clusters of different
feature types). The comparison of figures 5.7 and 5.8 shows again the trade-

69

Chapter 5 Discussion and Further Results

Figure 5.4: Results after one step relevance feedback “normal”

Figure 5.5: Results after one step relevance feedback “semantic”

70

5.3 Frequent Itemset Mining and Semantic Rules Chapter 5

off between how many frequent itemsets one collects and the confidence of
the deduced rules. A value between 0.1% and 1% for the minimal support
might be the best choice. However, methods to increase the support would
be needed. One method might be to identify first keywords that appear
frequently together as a concept and then mine per concept instead of min-
ing per single keyword. I.e. a multistage process which applies frequent
itemset mining to keywords only, first, and based on these results is applied
to keywords and visual features. This would make sense conceptually, since
one would identify high level associations before mining for low-level asso-
ciations. The method of keyword-clustering discussed in section 3.3.3 could
be used to find these high level concepts, also. Questions that remain are
the influence of the uneven distribution of the low-level feature clusters or
the interestingness of rules based on pure statistical measures. While a lot
of improvements can still be done, the results in figures 5.1 and 5.2 are quite
encouraging already.

71

Chapter 5 Discussion and Further Results

Figure 5.6: Runtime of frequent itemset mining algorithms.

Figure 5.7: Number of frequent itemsets and long frequent itemsets.

Figure 5.8: Confidence for different minimal support thresholds.

72

5.4 The Keyword Search Chapter 5

Figure 5.9: Semantic vs. Normal keyword search

5.4 The Keyword Search

Ranked boolean queries on an inverted keyword index were implemented
as a base for text-queries. Text ranking of the results was done with the
td∗idf measure. In distinction to existing image retrieval systems on the web,
ranking was improved by including the visual appearance of the candidates
into the ranking process. In figure 5.9 measurements regarding the result of
the keyword search with ranking based on visual content, as introduced in
section 3.4 are shown. It is visible that in average the precision increases
somewhat, but in particular the number of different semantic concepts on
the first set of results increases. This integrates perfectly into our concept
of a keyword query followed by a visual nearest neighbor search: Offering a
more diverse selection of results on the first page gives the user the chance to
choose between more “directions” for the visual nearest neighbor search. At
the same time, since connected components of images where ranked higher
when they are large, which not only increases the semantic relevancy of
the first results, but also the probability that there are some visually and
semantically similar images to be found by the following nearest neighbor
search. Visual examples for the results of this keyword query have been
shown in chapter 3 in figures 3.13 through 3.16.

73

Chapter 6 Conclusions

Chapter 6

Conclusions

In this thesis a concept and a system design for large-scale, content-based
image retrieval on the WWW have been introduced and implemented.

Content-based image retrieval has been taken to a new level of scale by
searching a collection of images in the order of Millions. To achieve this
large-scale experiment, a large dataset consisting of over 3 Million images
and collateral text was collected from the World Wide Web. Several low-
level MPEG-7 image feature types were extracted. Keywords were indexed
as an additional high-level feature. A complete system which enables access
to the whole dataset was implemented and made available to the public on
the WWW.

The suggested retrieval-concept starts with a query-by-keyword as a first
step, which identifies high-level semantic concepts for this query. The di-
versity of these concepts and their relevance were increased by using a new,
graph-based method which re-ranks and summarizes the images for a given
keyword-query based on their visual content. At the same time, (semantic)
noise introduced by images that are either visually far from the semantic
concept or appear very often within the first few results was reduced. The
method was made scalable to large datasets with a new way for approxi-
mating distance calculations.

From this summarized representation, in a second step, the user can
select images which match the semantic concept he was looking for. The
results of this visual nearest neighbor search are refined with relevance feed-
back.

Several proposals such as LSI or statistical models were discussed as a
possibility to find relations between keywords and image features. Frequent

74

Chapter 6

itemset mining was identified as one of the few (if not the only) existing
scalable methods to gain insight into the semantics in the dataset, given by
the associations between keywords and images. Transactions were defined
in the context of web-image retrieval as a series of keywords and low-level
feature cluster ids. The itemset mining process was done per keyword to
scale the method and identify interesting rules. This way, the multi-modal
characteristics of the data could be exploited in several ways. A method
was introduced which selects low-level feature clusters for nearest neighbor
search based on rules deduced from the semantic patterns identified. Initial
weighting for the combination of several feature vectors was deduced from
these patterns, too. The relevance feedback process was extended and im-
proved by re-ranking the results of a visual nearest neighbor search with
keyword information. The required keywords were obtained by keeping the
initial query-keyword(s) in memory and by adding the keywords assigned to
the query-images for visual relevance feedback.

The retrieval-concept of a keyword-query followed by relevance feedback
on visual appearance was shown to result in more precise results than plain
keyword search. The suggested improvements based on semantic rules de-
duced from frequent itemset mining and the graph-based summary of the
keyword-query results were shown to increase the precision even more, while
maintaining scalability. In particular, low-level feature clusters had not to
be made overlapping, which reduced the required amount of data by a factor
7.

Several suggestions and experiments were made to even further exploit
frequent itemsets and association rules in multimedia datasets. They in-
clude an approach to semantic clustering based an frequent itemsets or the
incorporation of rules obtained from long-term relevance feedback. While
our system for image retrieval on the WWW could not yet benefit from all
these suggestions, we propose that the methods are also applicable to other,
more controlled multimedia datasets, where they are believed to show good
results.

75

Chapter 7 Outlook

Chapter 7

Outlook

While the system as introduced in the previous sections has shown to per-
form very well, we discovered many avenues which could lead to improved
versions:

Starting with the low-level feature extraction, we suggest the implemen-
tation of some unsupervised segmentation which is applied where the data
are suitable, in particular on images with uniform backgrounds, the num-
ber of which in our dataset we underestimated. In fact, in [6] it has been
shown that segmentation increases the performance of image retrieval sys-
tem. However, the question to what extent the additional computational
efforts affect extraction, storage and retrieval of the objects obtained from
segmentation needs to be considered.

There are alternative methods to combine the different visual MPEG-7
features, one very promising has bee suggested very recently in [48], where
instead of a weighted distance, a decision making framework based on fuzzy
theory is used.

The K-Means clustering algorithm was chosen for its fast processing, but
did not deliver high-quality results. In particular the uneven occupation of
the clusters lead to problems in scalability and in the quality of frequent
itemset mining results. Recently, in [49] a new adaptive indexing structure
was suggested. The suggested method is based on VA-Files (Vector Approx-
imation). The problem with most existing VA-based methods is that they
suppose an uniform distribution of the data, which is not the case usually.
In fact, in [17] the feature-vector data from our Cortina dataset has been
analyzed and the distribution of each dimension is Rayleigh rather than uni-
form for the HTD as an example. Based on this information, each of the

76

Chapter 7

feature vector dimensions is partitioned into bins such that each bin contains
approximately an equal number of objects. The method is very scalable and
results in uniformly populated index bins, which matches our requirements
perfectly. This method being an indexing rather than a clustering method,
to mine association rules as suggested in this thesis, instead of using cluster
identifiers in the transactions the hypercubes given by the index could be
used.

Exploiting multi-modal characteristics of data-sets should be further in-
vestigated, not only for web-image retrieval. Frequent itemset mining and
association rule discovery for this task can be taken much further. It seems
to be one of the few methods which is applicable to large datasets. In partic-
ular the idea of building semantic clusters based on frequent itemsets which
reflect the semantic associations between different modes of the data should
be looked into for more controlled datasets.

Statistical measures for the interestingness of a rule should be considered.
The so called J-measure as introduced in [50] might be a suitable tool.

The process of frequent itemset mining could be further adapted to the
task. For instance, one could probably define special algorithms which find
only relations between words and low-level feature clusters and disregard
certain other associations. Once the size of the dataset grows even more,
parallel implementations of frequent itemset mining algorithms can be used
— this has been an active area of research in recent years.

More data-sources could be included into the search process. We started
to collect long-term relevance feedback, i.e we stored usage data. Unfortu-
nately we could not collect enough data yet, that could be included in the
search process. But once enough information has been gathered, frequent
itemset mining is suggested to analyze these data in the same manner as
introduced for our images. The information gained from this could be com-
bined with the existing data to improve semantic knowledge and, based on
that, the search process. Improvements made for text-retrieval on the web,
such as PageRank [2] could be implemented. The semantics within the col-
lection could be further analyzed by integrating thesaurus-data like WordNet
[22], in particular the semantic distance between keywords, as mentioned in
the appropriate chapters in this work.

The basic system has been shown to be scalable to large amounts of
data. To implement even larger systems, issues like parallelization, operating

77

Chapter 7 Outlook

system limits etc. come into play. One of the most urgent improvements is a
real database server. Our database runs on a regular high-end PC together
with many applications. For database tasks the disk access is the bottleneck,
thus a database server with fast and parallel organized hard-drives is needed.

An issue of very different nature is copyright: The collection and use of
images by the system user raises some questions. Some of them have been
addressed in [51].

78

Cortina in Numbers Appendix A

Appendix A

Cortina in Numbers

The system Cortina can be characterized with the following numbers as of
25 April 2004.

Number of Images 3’006’660
Number of Keywords 680’256

Size of Keyword Index 50’260’345 lines

Size of mySQL Database 23 GB

Size of Image Collection 111 GB

Size of non-overlapping feature vector clusters 7.3 GB
Size of overlapping feature vector clusters 51 GB

Size of Transactions File (1 keyid, ehd, scd, htd) 1.33 GB

Size of Transactions File (1 keyid, ehd, scd, htd, dcd) 2.63 GB

79

Appendix B About the Name Cortina

Appendix B

About the Name Cortina

Cortina is Latin and means caldron or tripod. The term is used in con-
text for the ancient oracle of Delphi. In his famous work Aeneid, the poet
Vergilius (70-19 b.C.) speaks of the ”Phoebi Cortina”, the caldron in the
temple of Apollo at Delphi. Cortina as a synonym for the ancient oracle of
Delphi inspired my choice for the name of our system. The well-known quote
”Neque te Phoebi Cortina fefellit” from the Aeneid translates to ”Apollos
caldron did not deceive you”.

Latin: Aeneid 6:340-351
Hunc ubi vix multa maestum cognovit in umbra, sic prior adloquitur: ”quis te,
Palinure, deorum eripuit nobis medioque sub aequore mersit? dic age. namque
mihi, fallax haud ante repertus, hoc uno responso animum delusit Apollo,qui fore
te ponto incolumem finisque canebat venturum Ausonios. en haec promissa fides
est?” ille autem: ”neque te Phoebi cortina fefellit, dux Anchisiade, nec me deus
aequore mersit. Namque gubernaclum multa vi forte revulsum, cui datus haerebam
custos cursusque regebam, praecipitans traxi mecum [...]

English Translation (ed. Theodore C. Williams)
Aeneas now Discerned his sad face through the blinding gloom, And hailed him
thus : 0 Palinurus, tell What god was he who ravished thee away From me and
mine, beneath the o’crwhelming wave? Speak on! for he who ne’er had spoke
untrue, Apollo’s self, did mock my listening mind, And chanted me a faithful oracle
That thou shouldst ride the seas unharmed, and touch Ausonian shores. Is this the
pledge divine? Then he, 0 chieftain of Anchises’ race, Apollo’s tripod told thee not
untrue. No god did thrust me down beneath the wave, For that strong rudder unto
which I clung, My charge and duty, and my ship’s sole guide, Wrenched from its
place, dropped with me as I fell.

80

User Questioning Form Appendix C

Appendix C

User Questioning Form

A sample of the forms used for questioning user about the precision is shown in
figure C.1.

81

Appendix C User Questioning Form

Figure C.1: Sample Questionnaire

82

CD ROM Appendix D

Appendix D

CD ROM

83

Appendix BIBLIOGRAPHY

Bibliography

[1] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, 30(1–7):107–117,
1998.

[2] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report, Stan-
ford Digital Library Technologies Project, 1998.

[3] Wei-Ying Ma and B. S. Manjunath. A texture thesaurus for browsing large
aerial photographs. Journal of the American Society of Information Science,
49(7):633–648, 1998.

[4] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley,
Qian Huang, Byron Dom, Monika Gorkani, Jim Hafner, Denis Lee,
Dragutin Petković, David Steele, and Peter Yanker. Query by image and
video content: The qbic system. IEEE Computer, 28(9):23–32, September
1995.

[5] Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and
Jitendra Malik. Blobworld: A system for region-based image indexing and
retrieval. In Third International Conference on Visual Information Systems.
Springer, 1999.

[6] Wei-Ying Ma and B. S. Manjunath. Netra: A toolbox for navigating large
image databases. Multimedia Systems, 7(3):184–198, 1999.

[7] Ingemar J. Cox, Matthew L. Miller, Thomas P. Minka, Thomas Papathomas,
and Peter N. Yianilos. The bayesian image retrieval system, pichunter: Theory,
implementation and psychophysical experiments. IEEE Transactions on Image
Processing (to appear), 9(1):20–37, January 2000.

[8] Yong Rui and Thomas S. Huang. A novel relevance feedback technique in image
retrieval. In Proceedings of 7th ACM International Conference on Multimedia
(MM), pages 67–70, 1999.

[9] M. Swain, C. Frankel, and V. Athitsos. Webseer: An image search engine for
the world wide web, 1997.

84

BIBLIOGRAPHY Appendix

[10] Shawn Newsan, Baris Sumengen, and B.S. Manjunath. Category-based image
retrieval, 2001.

[11] Open Directory Project. http://www.dmoz.org.

[12] B.S. Manjunath, Philippe Salembier, and Thomas Sikora, editors. Introduction
to MPEG-7. John Wiley and Sons Ltd., 2002.

[13] Yining Deng, B. S. Manjunath, Charles Kenney, M. S.Moore, and H.Shin. An
efficient color representation for image retrieval. IEEE Transactions on Image
Processing, 10(1):140–147, January 2001.

[14] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

[15] Getty Images Inc. getty images, April 2004.

[16] Corbis. Corbis, April 2004.

[17] Jelena Tešić. Managing Large-scale Multimedia Repositories. PhD thesis, Uni-
versity of California at Santa Barbara, 2004.

[18] Ullrich Moenich. Studienarbeit, April 2004.

[19] Gerald Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[20] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by latent semantic analysis.
Journal of the American Society of Information Science, 41(6):391–407, 1990.

[21] Brian Pinkerton. Finding what people want: Experiences with the webcrawler.
In The Second International WWW Conference, October 1994.

[22] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Five papers on
wordnet. International Journal of Lexicography, 1991.

[23] Lars Thiele. Studienarbeit, April 2004.

[24] Ka-Man Wong and Lai-Man Po. Mpeg-7 dominant color descriptor based
relevance feedback using merged palete histogram. May 2004.

[25] T. Westerveld. Image retrieval: Content versus context. In Content-Based
Multimedia Information Access, RIAO, 2000.

[26] Kobus Barnard and David Forsyth. Learning the semantics of words and
pictures. International Conference on Computer Vision, 2:408–415, 2001.

[27] Kobus Barnard, Pinar Duygulu, and David Forsyth. Clustering art. Computer
Vision and Pattern Recognition, II:435–439, 2001.

85

Appendix BIBLIOGRAPHY

[28] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. Blei, and M. Jordan.
Matching words and pictures, 2003.

[29] Kobus Barnard, Pinar Duygulu, and David Forsyth. Exploiting text and image
feature co-occurrence statistics in large datasets. to appear as a chapter in
Trends and Advances in Content-Based Image and Video Retrieval (tentative
title), 2004.

[30] Thomas Hofmann and Jan Puzicha. Statistical models for co-occurence data,
1998.

[31] Jia Li and James Z. Wang. Automatic linguistic indexing of pictures by a
statistical modeling approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(9):1075–1088, 2003.

[32] Jelena Tešić, Shawn Newsam, and Bangalore S. Manjunath. Mining image
datasets using perceptual association rules. In Proceedings of SIAM Sixth
Workshop on Mining Scientific and Engineering Datasets in conjunction with
the Third SIAM International Conference (SDM), May 2003.

[33] Osmar R. Zäıane, Jiawei Han, Ze-Nian Li, and Jean Hou. Mining multime-
dia data. In Proceedings of CASCON’98: Meeting of Minds, pages 83–96,
November 1998.

[34] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association
rules between sets of items in large databases. In Peter Buneman and Sushil
Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Confer-
ence on Management of Data, pages 207–216, Washington, D.C., 26–28 1993.

[35] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets:
generalizing association rules to correlations. SIGMOD Record (ACM Special
Interest Group on Management of Data), pages 265–276, 1997.

[36] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-
ciation rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors,
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan
Kaufmann, 12–15 1994.

[37] David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data
Mining. MIT Press, 2001.

[38] Bart Goethals and Mohammed J. Zaki. Advances in frequent itemset mining
implementations. In {FIMI’03} IEEE IDCM Workshop on Frequent Itemset
Mining Implementations, November 2003.

[39] Gosta Grahne and Jianfei Zhu. Efficiently using prefix-trees in mining frequent
itemsets. In {FIMI’03} IEEE IDCM Workshop on Frequent Itemset Mining
Implementations, November 2003.

86

BIBLIOGRAPHY Appendix

[40] J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. In Proc. of 1995 Int’l Conf. on Very Large Data Bases (VLDB’95),
Zürich, Switzerland, September 1995, pages 420–431, 1995.

[41] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Word-
net::similarity - measuring the relatedness of concepts. In Nineteenth National
Conference on Artificial Intelligence (AAAI-04), July 2004.

[42] Florian Beil, Martin Ester, and Xiaowei Xu. Frequent term-based text clus-
tering. In Proceedings 8th International Conference on Knowledge Discovery
and Data Mining (KDD 2002), 2002.

[43] Martin Ester Fung Benjamin, Wang Ke. Large hierarchical document cluster-
ing using frequent itemsets. In Proc. SIAM International Conference on Data
Mining 2003 (SDM 2003), May 2003.

[44] Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph
Library, User Guide and Reference Manual. Addison-Wesley, 2002.

[45] Vittorio Castelli and Lawrence D. Bergman, editors. Image Databases - Search
and Retrieval of Digital Imagery. John Wiley and Sons Ltd., 2002.

[46] Donna Harman. Overview of the first text retrieval conference (trec-1), 1992.

[47] Viper project benchmarking website. http://viper.unige.ch/research/ bench-
marking/index.html, visited April 21 2004.

[48] Azadeh Kushki, Panagiotis Androutsos, Konstantinos N. Plataniotis, and
Anastasios N. Venetsanopoulos. Retrieval of images from artistic repositories
using a decision fusion framework. IEEE Transactions on Image Processing,
13:277– 292, March 2004.

[49] Jelena Tešić, Sitaram Bhagavathy, and B. S. Manjunath. Issues concerning
dimensionality and similarity search. In Proceedings of 3rd International Sym-
posium on Image and Signal Processing and Analysis (ISPA), September 2003.

[50] Padhraic Smith and Rodney M. Goodman. An information theoretic approach
to rule induction from databases. IEEE Transactions on Knowledge and Date
Engineering, 4(4):301–316, August 1992.

[51] Beat Hangartner, Lukas Hohl, Tobias Koch, and Till Quack. Neue medien -
stand der technik - stand des rechts. Seminararbeit in Urheberrecht Uni/ETH
Zürich, June 2002.

87

